Solve for [tex]\( x \)[/tex]:

[tex]\[ 3x = 6x - 2 \][/tex]


Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[ \frac{3z - m}{5z - n} = \frac{3z + n}{5z - m} \][/tex]



Answer :

Let's solve the given equation step-by-step:

Given:
[tex]\[ \frac{3z - m}{5z - n} = \frac{3z + n}{5z - m} \][/tex]

### Step 1: Cross-multiply

Cross-multiplication helps to eliminate the fractions:

[tex]\[ (3z - m)(5z - m) = (3z + n)(5z - n) \][/tex]

### Step 2: Expand both sides

Expand both sides of the equation by distributing the terms:

[tex]\[ (3z - m)(5z - m) = 3z \cdot 5z - 3z \cdot m - m \cdot 5z + m \cdot m = 15z^2 - 3zm - 5zm + m^2 = 15z^2 - 8zm + m^2 \][/tex]

[tex]\[ (3z + n)(5z - n) = 3z \cdot 5z - 3z \cdot n + n \cdot 5z - n \cdot n = 15z^2 - 3zn + 5zn - n^2 = 15z^2 + 2zn - n^2 \][/tex]

So, we have:

[tex]\[ 15z^2 - 8zm + m^2 = 15z^2 + 2zn - n^2 \][/tex]

### Step 3: Simplify the equation

Subtract [tex]\(15z^2\)[/tex] from both sides to simplify:

[tex]\[ -8zm + m^2 = 2zn - n^2 \][/tex]

### Step 4: Rearrange the terms to solve for [tex]\(z\)[/tex]

Bring all the terms involving [tex]\(z\)[/tex] on one side and the constants on the other side:

[tex]\[ -8zm - 2zn = -n^2 - m^2 \][/tex]

Factor out the common term [tex]\(z\)[/tex] on the left side:

[tex]\[ z(-8m - 2n) = -n^2 - m^2 \][/tex]

### Step 5: Solve for [tex]\(z\)[/tex]

Divide both sides by [tex]\(-8m - 2n\)[/tex]:

[tex]\[ z = \frac{n^2 + m^2}{8m + 2n} \][/tex]

To simplify further, factor out the common factor in the denominator:

[tex]\[ z = \frac{n^2 + m^2}{2(4m + n)} \][/tex]

Thus, the solution for [tex]\(z\)[/tex] is:

[tex]\[ z = \frac{m^2 + n^2}{2(4m + n)} \][/tex]

So, the answer is:

[tex]\[ z = \frac{m^2 + n^2}{2(4m + n)} \][/tex]