Solve for [tex]$x$[/tex]:

[tex]\[ \frac{1}{x - y i} = (1 + 2 i)^2 - \left( \frac{1 + 4 i}{4 - i} \right)^3 \][/tex]



Answer :

Let's solve the given equation step by step. The given equation is:

[tex]\[ \frac{1}{x - y i} = (1 + 2i)^2 - \left( \frac{1 + 4i}{4 - i} \right)^3 \][/tex]

We'll start by examining both sides of the equation.

### Left Side of the Equation
The left side is given by:

[tex]\[ \frac{1}{x - y i} \][/tex]

This term represents a complex fraction with [tex]\(i\)[/tex] representing the imaginary unit.

### Right Side of the Equation
Let’s break down the right side of the equation into separate parts and solve each part step by step.

1. First Term: [tex]\((1 + 2i)^2\)[/tex]

To compute [tex]\((1 + 2i)^2\)[/tex]:

[tex]\[ (1 + 2i)^2 = (1 + 2i)(1 + 2i) \][/tex]

Applying the distributive property (FOIL method):

[tex]\[ (1 + 2i)(1 + 2i) = 1 \cdot 1 + 1 \cdot 2i + 2i \cdot 1 + 2i \cdot 2i \][/tex]

[tex]\[ = 1 + 2i + 2i + 4i^2 \][/tex]

Since [tex]\(i^2 = -1\)[/tex]:

[tex]\[ = 1 + 4i + 4(-1) \][/tex]

[tex]\[ = 1 + 4i - 4 \][/tex]

[tex]\[ = -3 + 4i \][/tex]

2. Second Term: [tex]\(\left( \frac{1 + 4i}{4 - i} \right)^3\)[/tex]

Let’s start by simplifying [tex]\(\frac{1 + 4i}{4 - i}\)[/tex]:

To do this, we will multiply by the conjugate of the denominator:

[tex]\[ \frac{1 + 4i}{4 - i} \cdot \frac{4 + i}{4 + i} = \frac{(1 + 4i)(4 + i)}{(4 - i)(4 + i)} \][/tex]

Expanding both the numerator and the denominator:

The denominator:

[tex]\[ (4 - i)(4 + i) = 4^2 - i^2 = 16 - (-1) = 16 + 1 = 17 \][/tex]

The numerator:

[tex]\[ (1 + 4i)(4 + i) = 1 \cdot 4 + 1 \cdot i + 4i \cdot 4 + 4i \cdot i \][/tex]

[tex]\[ = 4 + i + 16i + 4i^2 \][/tex]

Since [tex]\(i^2 = -1\)[/tex]:

[tex]\[ = 4 + i + 16i + 4(-1) \][/tex]

[tex]\[ = 4 + 17i - 4 \][/tex]

[tex]\[ = 17i \][/tex]

Thus:

[tex]\[ \frac{1 + 4i}{4 - i} = \frac{17i}{17} = i \][/tex]

Cubing this result:

[tex]\[ \left( i \right)^3 = -i \][/tex]

Combining the results from both terms on the right side:

[tex]\[ (1 + 2i)^2 - \left( \frac{1 + 4i}{4 - i} \right)^3 = (-3 + 4i) - (-i) \][/tex]

Simplifying further:

[tex]\[ = -3 + 4i + i = -3 + 5i \][/tex]

Now we have:

[tex]\[ \frac{1}{x - y i} = -3 + 5i \][/tex]

Simplifying the left side, we get:

[tex]\[ \frac{1}{x - y i} \][/tex]

Hence, the solution in its simplified form is:

[tex]\[ \frac{1}{-i y + x} = -3 + 5i \][/tex]

This completes the detailed step-by-step solution of the given equation.