Part 1 of 6
Let [tex]\( P_n \)[/tex] be the statement: [tex]\( 3 + 11 + 19 + \ldots + (8n - 5) = n(4n - 1) \)[/tex].
We need to show that [tex]\( P_n \)[/tex] is true for [tex]\( n = 1 \)[/tex].
When [tex]\( n = 1 \)[/tex]:
Left-hand side (LHS):
[tex]\[ 3 + 11 + 19 + \ldots + (8 \cdot 1 - 5) = 8 \cdot 1 - 5 = 3 \][/tex]
Right-hand side (RHS):
[tex]\[ 1(4 \cdot 1 - 1) = 1(4 - 1) = 1 \cdot 3 = 3 \][/tex]
Thus, the statement [tex]\( P_1 \)[/tex] is:
[tex]\[ 3 = 3 \][/tex]
Since both sides match, [tex]\( P_1 \)[/tex] is true.