What is the quotient?

[tex]\[ \frac{3y + 2}{3y} \div \frac{6y^2 + 4y}{3y + 2} \][/tex]

A. [tex]\(\frac{1}{2y}\)[/tex]

B. [tex]\(\frac{3y + 2}{6y^2}\)[/tex]

C. [tex]\(\frac{1}{y}\)[/tex]

D. [tex]\(\frac{2(3y + 2)}{3}\)[/tex]



Answer :

Certainly! Let's carefully go through the process of finding the quotient step-by-step.

Given the expressions:

[tex]\[ \text{Expression 1: } \frac{3y + 2}{3y} \][/tex]

[tex]\[ \text{Expression 2: } \frac{6y^2 + 4y}{3y + 2} \][/tex]

We need to find the quotient:

[tex]\[ \frac{\frac{3y + 2}{3y}}{\frac{6y^2 + 4y}{3y + 2}} \][/tex]

To divide the two fractions, we multiply the first fraction by the reciprocal of the second fraction:

[tex]\[ \frac{3y + 2}{3y} \times \frac{3y + 2}{6y^2 + 4y} \][/tex]

Now, we simplify this step-by-step:

1. Multiply the numerators:

[tex]\[ (3y + 2) \times (3y + 2) = (3y + 2)^2 \][/tex]

2. Multiply the denominators:

[tex]\[ 3y \times (6y^2 + 4y) = 3y \times (2y \cdot 3y + 4y) = 3y \times (6y^2 + 4y) \][/tex]

3. Rewrite our fraction:

[tex]\[ \frac{(3y + 2)^2}{3y \times (6y^2 + 4y)} \][/tex]

Since [tex]\( (6y^2 + 4y) = 2y(3y + 2) \)[/tex], we substitute to obtain:

[tex]\[ \frac{(3y + 2)^2}{3y \times 2y(3y + 2)} = \frac{(3y + 2)^2}{6y^2 (3y + 2)} \][/tex]

Next, we cancel one [tex]\( (3y + 2) \)[/tex] term from the numerator and the denominator:

[tex]\[ \frac{3y + 2}{6y^2} \][/tex]

Thus, the simplified quotient is:

[tex]\[ \frac{3y + 2}{6y^2} \][/tex]

So, the correct answer is:

[tex]\[ \boxed{\frac{3y + 2}{6y^2}} \][/tex]