Triangle ABC is a right triangle and [tex]\cos \left(22.6^{\circ}\right)=\frac{b}{13}[/tex].

Solve for [tex]b[/tex] and round to the nearest whole number.

Which equation correctly uses the value of [tex]b[/tex] to solve for [tex]a[/tex]?

A. [tex]\tan \left(22.6^{\circ}\right)=\frac{a}{13}[/tex]
B. [tex]\tan \left(22.6^{\circ}\right)=\frac{13}{a}[/tex]
C. [tex]\tan \left(22.6^{\circ}\right)=\frac{a}{12}[/tex]
D. [tex]\tan \left(22.6^{\circ}\right)=\frac{12}{a}[/tex]



Answer :

Let's solve the problem step-by-step.

### Step 1: Solving for [tex]\(D\)[/tex]
Given the equation:
[tex]\[ \cos \left(22.6^{\circ}\right) = \frac{D}{13} \][/tex]

We need to solve for [tex]\(D\)[/tex]. Rearranging the equation for [tex]\(D\)[/tex]:

[tex]\[ D = 13 \times \cos \left(22.6^{\circ}\right) \][/tex]

Using the given calculations, we find:

[tex]\[ D = 12 \][/tex]

### Step 2: Identifying the Correct Equation to Solve for [tex]\(b\)[/tex]
Given a new set of options to identify which equation correctly uses [tex]\(b\)[/tex] (which is the value we just calculated as [tex]\(D\)[/tex]):

[tex]\[ \tan \left(22.6^{\circ}\right)=\frac{a}{13} \][/tex]
[tex]\[ \tan \left(22.6^{\circ}\right)=\frac{13}{a} \][/tex]
[tex]\[ \tan \left(22.6^{\circ}\right)=\frac{a}{12} \][/tex]
[tex]\[ \tan \left(22.6^{\circ}\right)=\frac{12}{a} \][/tex]

To determine which equation is correct, let's recall the relationship between the sides in a right triangle involving [tex]\(\tan\)[/tex]:

[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]

In this scenario:
- [tex]\(\theta = 22.6^{\circ}\)[/tex]
- The side adjacent to [tex]\(\theta\)[/tex] is the one where we have used cosine, which corresponds to side [tex]\(D = 12\)[/tex].
- The side opposite to [tex]\(\theta\)[/tex] is [tex]\(a\)[/tex].

Thus, the correct equation using the tangent function would be:

[tex]\[ \tan \left(22.6^{\circ}\right)=\frac{a}{12} \][/tex]

### Summary of the Solution
1. [tex]\(D\)[/tex] was found to be [tex]\(12\)[/tex].
2. The correct equation using the value of [tex]\(b\)[/tex] to solve for [tex]\(a\)[/tex] is:
[tex]\[ \tan \left(22.6^{\circ}\right)=\frac{a}{12} \][/tex]

Thus, the correct final output is:
[tex]\[ (12, 'The correct equation is tan(22.6°) = a / 12') \][/tex]