Find the critical points, domain endpoints, and local extreme values for the function.

[tex]\[ y = 6x \sqrt{100 - x^2} \][/tex]

From the critical point(s) and domain endpoint(s), what is/are the point(s) corresponding to local maxima? Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. The point(s) corresponding to the local maxima is/are [tex]\(\square\)[/tex]

(Type an ordered pair. Type an exact answer for each coordinate, using radicals as needed. Use a comma to separate answers as needed.)

B. There are no points corresponding to local maxima.



Answer :

To find the critical points, domain endpoints, and local extreme values for the function
[tex]\[ y = 6 x \sqrt{100 - x^2} \][/tex]

follow these steps:

### 1. Define the Function and its Domain
We start with:
[tex]\[ y = 6 x \sqrt{100 - x^2} \][/tex]
The domain of [tex]\( \sqrt{100 - x^2} \)[/tex] requires:
[tex]\[ 100 - x^2 \geq 0 \implies -10 \leq x \leq 10 \][/tex]

### 2. Find Critical Points
Critical points occur where the first derivative is zero or undefined. Let's find the first derivative [tex]\( y' \)[/tex]:
[tex]\[ y' = \frac{d}{dx} \left( 6 x \sqrt{100 - x^2} \right) \][/tex]

We can use the product rule:
[tex]\[ y' = 6 \left( \frac{d}{dx} x \cdot \sqrt{100 - x^2} + x \cdot \frac{d}{dx} \sqrt{100 - x^2} \right) \][/tex]
First, calculate each part:

- [tex]\(\frac{d}{dx} x = 1\)[/tex]
- [tex]\(\frac{d}{dx} \sqrt{100 - x^2} = \frac{-x}{\sqrt{100 - x^2}} \)[/tex]

Now, combine them:
[tex]\[ y' = 6 \left( \sqrt{100 - x^2} + x \cdot \frac{-x}{\sqrt{100 - x^2}} \right) \][/tex]
[tex]\[ y' = 6 \left( \sqrt{100 - x^2} - \frac{x^2}{\sqrt{100 - x^2}} \right) \][/tex]
[tex]\[ y' = 6 \left( \frac{100 - x^2 - x^2}{\sqrt{100 - x^2}} \right) \][/tex]
[tex]\[ y' = 6 \left( \frac{100 - 2x^2}{\sqrt{100 - x^2}} \right) \][/tex]

Set the first derivative to 0 to find critical points:
[tex]\[ 6 \left( \frac{100 - 2x^2}{\sqrt{100 - x^2}} \right) = 0 \][/tex]
[tex]\[ 100 - 2x^2 = 0 \][/tex]
[tex]\[ 2x^2 = 100 \][/tex]
[tex]\[ x^2 = 50 \][/tex]
[tex]\[ x = \pm \sqrt{50} = \pm 5\sqrt{2} \][/tex]

### 3. Check the Domain Endpoints
The domain endpoints are:
[tex]\[ x = 10 \quad \text{and} \quad x = -10 \][/tex]

### 4. Evaluate the Function at These Points
Evaluate [tex]\( y \)[/tex] at the critical points and domain endpoints:
[tex]\[ y(5\sqrt{2}) = 6 \cdot 5\sqrt{2} \cdot \sqrt{100 - (5\sqrt{2})^2} \][/tex]
[tex]\[ = 6 \cdot 5\sqrt{2} \cdot \sqrt{100 - 50} \][/tex]
[tex]\[ = 6 \cdot 5\sqrt{2} \cdot \sqrt{50} \][/tex]
[tex]\[ = 6 \cdot 5\sqrt{2} \cdot 5\sqrt{2} \][/tex]
[tex]\[ = 6 \cdot 25 \cdot 2 = 300 \][/tex]

[tex]\[ y(-5\sqrt{2}) = 6 \cdot (-5\sqrt{2}) \cdot \sqrt{100 - 50} \][/tex]
[tex]\[ = 6 \cdot (-5\sqrt{2}) \cdot \sqrt{50} \][/tex]
[tex]\[ = 6 \cdot (-5\sqrt{2}) \cdot 5\sqrt{2} \][/tex]
[tex]\[ = 6 \cdot (-25) \cdot 2 = -300 \][/tex]

Domain endpoints:
[tex]\[ y(10) = 6 \cdot 10 \cdot \sqrt{100 - 100} = 6 \cdot 10 \cdot 0 = 0 \][/tex]
[tex]\[ y(-10) = 6 \cdot (-10) \cdot \sqrt{100 - 100} = 6 \cdot (-10) \cdot 0 = 0 \][/tex]

### 5. Determine the Local Maxima
- At [tex]\( x = 5\sqrt{2} \)[/tex], [tex]\( y = 300 \)[/tex]
- At [tex]\( x = -5\sqrt{2} \)[/tex], [tex]\( y = -300 \)[/tex]
- At [tex]\( x = 10 \)[/tex] and [tex]\( x = -10 \)[/tex], [tex]\( y = 0 \)[/tex]

### Conclusion
The local maximum is at [tex]\( x = 5\sqrt{2} \)[/tex] because it gives the highest value:
[tex]\[ \boxed{(5\sqrt{2}, 300)} \][/tex]
This is the only local maximum among the points evaluated. Therefore, the correct choice is:
A. The point(s) corresponding to the local maxima is/are [tex]\((5\sqrt{2}, 300)\)[/tex]