Use a calculator to find the [tex]$r$[/tex]-value of these data. Round the value to three decimal places.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 20 \\
\hline
3 & 14 \\
\hline
5 & 10 \\
\hline
9 & 6 \\
\hline
16 & 4 \\
\hline
\end{tabular}

A. -0.901
B. 0.811
C. -0.811
D. 0.901



Answer :

To find the [tex]$r$[/tex]-value (correlation coefficient) of the given data, follow these steps:

1. List the data points:
The data, [tex]$(x, y)$[/tex], consists of the pairs:
[tex]\[ (1, 20), (3, 14), (5, 10), (9, 6), (16, 4) \][/tex]

2. Calculate the means of [tex]$x$[/tex] and [tex]$y$[/tex]:
- The mean of [tex]$x$[/tex], denoted [tex]$\bar{x}$[/tex], is computed as:
[tex]\[ \bar{x} = \frac{1 + 3 + 5 + 9 + 16}{5} = \frac{34}{5} = 6.8 \][/tex]
- The mean of [tex]$y$[/tex], denoted [tex]$\bar{y}$[/tex], is computed as:
[tex]\[ \bar{y} = \frac{20 + 14 + 10 + 6 + 4}{5} = \frac{54}{5} = 10.8 \][/tex]

3. Calculate the deviations from the mean for [tex]$x$[/tex] and [tex]$y$[/tex]:
- For [tex]$x$[/tex]: [tex]$x_i - \bar{x}$[/tex]
- For [tex]$y$[/tex]: [tex]$y_i - \bar{y}$[/tex]

Compute these deviations for each data point.

4. Compute the product of deviations for each pair:
[tex]\[ (x_i - \bar{x})(y_i - \bar{y}) \][/tex]

5. Compute the square of deviations for each [tex]$x$[/tex] and [tex]$y$[/tex]:
[tex]\[ (x_i - \bar{x})^2 \quad \text{and} \quad (y_i - \bar{y})^2 \][/tex]

6. Sum these products and squares:
- Sum of the product of deviations, [tex]$\sum (x_i - \bar{x})(y_i - \bar{y})$[/tex].
- Sum of the square of deviations for [tex]$x$[/tex], [tex]$\sum (x_i - \bar{x})^2$[/tex].
- Sum of the square of deviations for [tex]$y$[/tex], [tex]$\sum (y_i - \bar{y})^2$[/tex].

7. Calculate the correlation coefficient [tex]$r$[/tex]:
[tex]\[ r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} \][/tex]

8. Round the result to three decimal places.

After performing the above calculations (either manually or using a statistical calculator), we find that the correlation coefficient [tex]$r$[/tex] rounds to:

[tex]\[ \boxed{-0.901} \][/tex]

So, the answer is A. -0.901.