Answered

Simplify [tex]\(-4r(-11r + 2r - 14)\)[/tex].

A. [tex]\(-36r^2 + 56r\)[/tex]

B. [tex]\(-36r^2 - 56r\)[/tex]

C. [tex]\(36r^2 + 56\)[/tex]

D. [tex]\(36r^2 + 56r\)[/tex]



Answer :

To simplify the expression [tex]\(-4r(-11r + 2r - 14)\)[/tex], we need to proceed step-by-step.

First, let's simplify the expression inside the parentheses:
[tex]\[ -11r + 2r - 14 \][/tex]

Combining like terms, we get:
[tex]\[ -11r + 2r = (-11 + 2)r = -9r \][/tex]
Therefore, the expression inside the parentheses simplifies to:
[tex]\[ -9r - 14 \][/tex]

Next, we need to distribute [tex]\(-4r\)[/tex] through the simplified expression inside the parentheses:
[tex]\[ -4r(-9r - 14) \][/tex]

We distribute [tex]\(-4r\)[/tex] to both terms inside the parentheses:
1. Distributing [tex]\(-4r\)[/tex] to [tex]\(-9r\)[/tex]:
[tex]\[ -4r \cdot -9r = 36r^2 \][/tex]
2. Distributing [tex]\(-4r\)[/tex] to [tex]\(-14\)[/tex]:
[tex]\[ -4r \cdot -14 = 56r \][/tex]

Combining these results, we have:
[tex]\[ 36r^2 + 56r \][/tex]

Thus, the simplified expression is:
[tex]\[ 36r^2 + 56r \][/tex]

Therefore, the answer is:
[tex]\[ \boxed{36r^2 + 56r} \][/tex]