Answered

Solve the following exponential equation. Express the solution in terms of natural logarithms or common logarithms. Then, use a calculator to obtain a decimal approximation for the solution.

[tex]\[ 2^{3x+2} = 7^{x-4} \][/tex]

The solution set expressed in terms of logarithms is [tex]$\square$[/tex].
(Use a comma to separate answers as needed. Simplify your answer. Use integers or fractions for any numbers expression. Use [tex]$\ln$[/tex] for natural logarithm and [tex]$\log$[/tex] for common logarithm.)

Now use a calculator to obtain a decimal approximation for the solution.
The solution set is [tex]$\square$[/tex].
(Use a comma to separate answers as needed. Round to two decimal places as needed.)



Answer :

To solve the equation [tex]\(2^{3x + 2} = 7^{x - 4}\)[/tex], follow these steps:

1. Express both sides in terms of logarithms:

Given:
[tex]\[ 2^{3x + 2} = 7^{x - 4} \][/tex]

Take the natural logarithm (ln) of both sides:
[tex]\[ \ln(2^{3x + 2}) = \ln(7^{x - 4}) \][/tex]

2. Apply properties of logarithms to simplify:

Using the property [tex]\(\ln(a^b) = b \cdot \ln(a)\)[/tex], we get:
[tex]\[ (3x + 2) \cdot \ln(2) = (x - 4) \cdot \ln(7) \][/tex]

3. Distribute the logarithms:
[tex]\[ 3x \cdot \ln(2) + 2 \cdot \ln(2) = x \cdot \ln(7) - 4 \cdot \ln(7) \][/tex]

4. Rearrange the equation to isolate x:
[tex]\[ 3x \cdot \ln(2) - x \cdot \ln(7) = -4 \cdot \ln(7) - 2 \cdot \ln(2) \][/tex]

5. Factor out x:
[tex]\[ x \cdot (3 \ln(2) - \ln(7)) = -4 \ln(7) - 2 \ln(2) \][/tex]

6. Solve for x:
[tex]\[ x = \frac{-4 \ln(7) - 2 \ln(2)}{3 \ln(2) - \ln(7)} \][/tex]

So, the solution set in terms of natural logarithms is:
[tex]\[ \left\{ \frac{-4 \ln(7) - 2 \ln(2)}{3 \ln(2) - \ln(7)} \right\} \][/tex]

7. Calculate the numerical approximation:

Using a calculator:

[tex]\[ \ln(2) \approx 0.6931, \quad \ln(7) \approx 1.9459 \][/tex]

Substitute these values into the equation:

[tex]\[ x = \frac{-4 \cdot 1.9459 - 2 \cdot 0.6931}{3 \cdot 0.6931 - 1.9459} \][/tex]

[tex]\[ x = \frac{-7.7836 - 1.3862}{2.0793 - 1.9459} \][/tex]

[tex]\[ x = \frac{-9.1698}{0.1334} \][/tex]

[tex]\[ x \approx -68.72 \][/tex]

Therefore, the decimal approximation for the solution is:

[tex]\[ \left\{ -68.72 \right\} \][/tex]

In conclusion:
- The solution set expressed in terms of natural logarithms is [tex]\(\left\{ \frac{-4 \ln(7) - 2 \ln(2)}{3 \ln(2) - \ln(7)} \right\}\)[/tex].
- The solution set with a decimal approximation is [tex]\(\left\{ -68.72 \right\}\)[/tex].