Answer :

To simplify the given expression:

[tex]\[ \frac{2 + \frac{1}{6}}{2 - \frac{5}{6}} \][/tex]

follow these steps:

1. Simplify the numerator:

[tex]\[ 2 + \frac{1}{6} \][/tex]

Convert the integer 2 to a fraction with a denominator of 6:

[tex]\[ 2 = \frac{12}{6} \][/tex]

Now, add the fractions:

[tex]\[ 2 + \frac{1}{6} = \frac{12}{6} + \frac{1}{6} = \frac{13}{6} \][/tex]

So the numerator is:

[tex]\[ 2 + \frac{1}{6} = \frac{13}{6} \][/tex]

2. Simplify the denominator:

[tex]\[ 2 - \frac{5}{6} \][/tex]

Convert the integer 2 to a fraction with a denominator of 6:

[tex]\[ 2 = \frac{12}{6} \][/tex]

Now, subtract the fractions:

[tex]\[ 2 - \frac{5}{6} = \frac{12}{6} - \frac{5}{6} = \frac{7}{6} \][/tex]

So the denominator is:

[tex]\[ 2 - \frac{5}{6} = \frac{7}{6} \][/tex]

3. Combine the fractions:

Now, you have the simplified numerator and denominator:

[tex]\[ \frac{\frac{13}{6}}{\frac{7}{6}} \][/tex]

To simplify this complex fraction, multiply the numerator by the reciprocal of the denominator:

[tex]\[ \frac{13}{6} \times \frac{6}{7} \][/tex]

The 6s cancel out:

[tex]\[ \frac{13}{7} \][/tex]

So, the simplified result is:

[tex]\[ \frac{13}{7} \][/tex]

4. Convert to decimal form:

To express this as a decimal:

[tex]\[ \frac{13}{7} \approx 1.857142857142857 \][/tex]

Therefore, the fully simplified fraction in its decimal form is approximately:

[tex]\[ 1.857142857142857 \][/tex]

Thus, the simplified form of the fraction [tex]\(\frac{2 + \frac{1}{6}}{2 - \frac{5}{6}}\)[/tex] is [tex]\( \frac{13}{7} \)[/tex], which is approximately equal to [tex]\( 1.857142857142857 \)[/tex] in decimal form.