Answer :

Sure, let's solve the integral [tex]\(\int \frac{1}{x^2} \, dx\)[/tex] step-by-step.

1. Identify the form of the integrand.
The integrand here is [tex]\(\frac{1}{x^2}\)[/tex]. This can be rewritten using a negative exponent as [tex]\(x^{-2}\)[/tex].

2. Set up the integral.
[tex]\[ \int x^{-2} \, dx \][/tex]

3. Apply the power rule for integration.
The power rule states that [tex]\(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)[/tex] for [tex]\(n \neq -1\)[/tex].

Here, [tex]\(n = -2\)[/tex].
[tex]\[ \int x^{-2} \, dx = \frac{x^{-2+1}}{-2+1} + C = \frac{x^{-1}}{-1} + C \][/tex]

4. Simplify the expression.
[tex]\[ \frac{x^{-1}}{-1} + C = -x^{-1} + C \][/tex]

5. Rewrite the expression using positive exponents.
[tex]\[ -x^{-1} + C = -\frac{1}{x} + C \][/tex]

Therefore, the integral [tex]\(\int \frac{1}{x^2} \, dx\)[/tex] is [tex]\(-\frac{1}{x} + C\)[/tex].

Now, examining the given options:

A) [tex]\(-x^2\)[/tex]

B) [tex]\(\frac{2}{x}\)[/tex]

C) [tex]\(\frac{1}{x^2}\)[/tex]

D) [tex]\(-\frac{1}{x} + C\)[/tex]

The correct answer is D) [tex]\(-\frac{1}{x} + C\)[/tex].