Answered

(Multiplying Linear Expressions MC)

Simplify [tex]$4.5p(2 - 0.2p)$[/tex].

A. [tex]$9p - 0.9p^2$[/tex]
B. [tex][tex]$9p - 0.2p^2$[/tex][/tex]
C. [tex]$9 - 0.2p^2$[/tex]
D. [tex]$9 - 0.9p^2$[/tex]



Answer :

To simplify the expression [tex]\(4.5p(2 - 0.2p)\)[/tex], follow these steps:

1. Apply the distributive property: The distributive property states that [tex]\(a(b + c) = ab + ac\)[/tex]. Here, [tex]\(a = 4.5p\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = -0.2p\)[/tex].

2. Distribute [tex]\(4.5p\)[/tex] through the parenthesis:
[tex]\[ 4.5p(2 - 0.2p) = 4.5p \cdot 2 + 4.5p \cdot (-0.2p) \][/tex]

3. Perform the individual multiplications:
- For the first term, [tex]\(4.5p \cdot 2\)[/tex]:
[tex]\[ 4.5p \cdot 2 = 9p \][/tex]
- For the second term, [tex]\(4.5p \cdot (-0.2p)\)[/tex]:
[tex]\[ 4.5p \cdot (-0.2p) = -0.9p^2 \][/tex]

4. Combine the simplified terms:
[tex]\[ 9p - 0.9p^2 \][/tex]

Thus, the simplified form of [tex]\(4.5p(2 - 0.2p)\)[/tex] is:
[tex]\[ 9p - 0.9p^2 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{9p - 0.9p^2} \][/tex]