Answer :
To determine the correct regression equation that models the data, we need to find the equation of the form [tex]\( y = ax + b \)[/tex], where [tex]\( a \)[/tex] is the intercept and [tex]\( b \)[/tex] is the slope.
Given the following sums from the data table:
[tex]\[ \begin{aligned} & \sum x = 143 \\ & \sum y = 411 \\ & \sum x^2 = 4573 \\ & \sum xy = 13393 \\ & n = 5 \quad \text{(number of data points)} \end{aligned} \][/tex]
We can calculate the slope ([tex]\( b \)[/tex]) and intercept ([tex]\( a \)[/tex]) of the regression line using the formulas:
[tex]\[ b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \][/tex]
[tex]\[ a = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2} \][/tex]
Substituting the given values:
1. Calculate the slope ([tex]\( b \)[/tex]):
[tex]\[ b = \frac{5 \cdot 13393 - 143 \cdot 411}{5 \cdot 4573 - 143^2} \][/tex]
2. Calculate the intercept ([tex]\( a \)[/tex]):
[tex]\[ a = \frac{411 \cdot 4573 - 143 \cdot 13393}{5 \cdot 4573 - 143^2} \][/tex]
After evaluating these expressions, we find the following approximate values:
[tex]\[ a \approx -14.77 \][/tex]
[tex]\[ b \approx 3.39 \][/tex]
Thus, the regression equation that correctly models the given data is:
[tex]\[ y = 3.39x - 14.77 \][/tex]
Comparing this with the given options:
- [tex]\( y = 2.87x + 0.12 \)[/tex]
- [tex]\( y = 2.87x + 11.85 \)[/tex]
Neither of these options match the calculated regression equation, indicating that provided options of [tex]\( y = 2.87x + 0.12 \)[/tex] and [tex]\( y = 2.87x + 11.85 \)[/tex] are incorrect. The correct regression equation based on the given data is:
[tex]\[ y = 3.39x - 14.77 \][/tex]
Given the following sums from the data table:
[tex]\[ \begin{aligned} & \sum x = 143 \\ & \sum y = 411 \\ & \sum x^2 = 4573 \\ & \sum xy = 13393 \\ & n = 5 \quad \text{(number of data points)} \end{aligned} \][/tex]
We can calculate the slope ([tex]\( b \)[/tex]) and intercept ([tex]\( a \)[/tex]) of the regression line using the formulas:
[tex]\[ b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \][/tex]
[tex]\[ a = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2} \][/tex]
Substituting the given values:
1. Calculate the slope ([tex]\( b \)[/tex]):
[tex]\[ b = \frac{5 \cdot 13393 - 143 \cdot 411}{5 \cdot 4573 - 143^2} \][/tex]
2. Calculate the intercept ([tex]\( a \)[/tex]):
[tex]\[ a = \frac{411 \cdot 4573 - 143 \cdot 13393}{5 \cdot 4573 - 143^2} \][/tex]
After evaluating these expressions, we find the following approximate values:
[tex]\[ a \approx -14.77 \][/tex]
[tex]\[ b \approx 3.39 \][/tex]
Thus, the regression equation that correctly models the given data is:
[tex]\[ y = 3.39x - 14.77 \][/tex]
Comparing this with the given options:
- [tex]\( y = 2.87x + 0.12 \)[/tex]
- [tex]\( y = 2.87x + 11.85 \)[/tex]
Neither of these options match the calculated regression equation, indicating that provided options of [tex]\( y = 2.87x + 0.12 \)[/tex] and [tex]\( y = 2.87x + 11.85 \)[/tex] are incorrect. The correct regression equation based on the given data is:
[tex]\[ y = 3.39x - 14.77 \][/tex]