Sharina simplified the expression [tex]$3(2x - 6 - x + 1)^2 - 2 + 4x$[/tex]. In Step 1, she simplified within the parentheses. In Step 2, she expanded the exponent.

Sharina's Work:
[tex]\[
\begin{tabular}{|c|c|}
\hline
& $3(2x - 6 - x + 1)^2 - 2 + 4x$ \\
\hline
1 & $3(x - 5)^2 - 2 + 4x$ \\
\hline
2 & $3\left(x^2 - 10x + 25\right) - 2 + 4x$ \\
\hline
3 & \\
\hline
4 & \\
\hline
\end{tabular}
\][/tex]

Which is a possible next step?

A. Simplify the expression by adding and subtracting from left to right.

B. Combine like terms within the parentheses.

C. Combine all [tex]$x$[/tex]-terms.

D. Distribute the 3 to each term in the parentheses by multiplying.



Answer :

Let's go through the steps Sharina took to simplify the expression [tex]\(3(2x-6-x+1)^2 - 2 + 4x\)[/tex]:

1. Simplifying within the parentheses:

The original expression is [tex]\(3(2x-6-x+1)^2 - 2 + 4x\)[/tex].

Within the parentheses:
[tex]\[ 2x - 6 - x + 1 = x - 5 \][/tex]
This gives us:
[tex]\[ 3(x-5)^2 - 2 + 4x \][/tex]
So, Step 1 is correct: [tex]\(3(x-5)^2 - 2 + 4x\)[/tex].

2. Expanding the exponent:

Next, we expand [tex]\((x-5)^2\)[/tex]:
[tex]\[ (x-5)^2 = x^2 - 10x + 25 \][/tex]
Plugging this back into the expression, we get:
[tex]\[ 3(x^2 - 10x + 25) - 2 + 4x \][/tex]
So, Step 2 is correct: [tex]\(3(x^2 - 10x + 25) - 2 + 4x\)[/tex].

3. Distributing the 3 to each term in the parentheses:

Now, we distribute 3 to each term inside the parentheses:
[tex]\[ 3 \cdot x^2 = 3x^2 \][/tex]
[tex]\[ 3 \cdot (-10x) = -30x \][/tex]
[tex]\[ 3 \cdot 25 = 75 \][/tex]
This results in:
[tex]\[ 3x^2 - 30x + 75 - 2 + 4x \][/tex]
So, Step 3 should be: [tex]\(3x^2 - 30x + 75 - 2 + 4x\)[/tex].

4. Combining like terms to get the final simplified expression:

Now, we need to combine like terms:
Combine the [tex]\(x\)[/tex]-terms:
[tex]\[ -30x + 4x = -26x \][/tex]
Combine the constants:
[tex]\[ 75 - 2 = 73 \][/tex]
This results in the final simplified expression:
[tex]\[ 3x^2 - 26x + 73 \][/tex]

So, a possible next step in Sharina's work would be Distribute the 3 to each term in the parentheses by multiplying.