What is the domain of the function [tex]$y=\sqrt{x}$[/tex]?

A. [tex]-\infty \ \textless \ x \ \textless \ \infty[/tex]
B. [tex]0 \ \textless \ x \ \textless \ \infty[/tex]
C. [tex]0 \leq x \ \textless \ \infty[/tex]
D. [tex]1 \leq x \ \textless \ \infty[/tex]



Answer :

To determine the domain of the function [tex]\( y = \sqrt{x} \)[/tex], we need to identify the set of all possible values of [tex]\( x \)[/tex] for which the function is defined.

The square root function [tex]\( \sqrt{x} \)[/tex] is defined only when the expression under the square root is non-negative. This means that the argument of the square root, [tex]\( x \)[/tex], must be greater than or equal to zero.

Mathematically, this can be written as:
[tex]\[ x \geq 0 \][/tex]

This implies all values of [tex]\( x \)[/tex] that are greater than or equal to zero are within the domain of the function [tex]\( y = \sqrt{x} \)[/tex].

Thus, the domain of the function [tex]\( y = \sqrt{x} \)[/tex] is:
[tex]\[ 0 \leq x < \infty \][/tex]

Therefore, the correct option is:
[tex]\[ \boxed{0 \leq x < \infty} \][/tex]