Answer :
To find the intersection of the sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we need to determine which elements are common to both sets. Let's examine each element in set [tex]\(A\)[/tex] and check whether it also exists in set [tex]\(B\)[/tex]:
1. The element [tex]\(-9\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
2. The element [tex]\(-7\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
3. The element [tex]\(-5\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
4. The element [tex]\(1\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
5. The element [tex]\(5\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
6. The element [tex]\(7\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
Therefore, the elements common to both sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are [tex]\(-9\)[/tex], [tex]\(5\)[/tex], and [tex]\(7\)[/tex].
So, the intersection [tex]\(A \cap B\)[/tex] is:
[tex]\[A \cap B = \{-9, 5, 7\}\][/tex]
1. The element [tex]\(-9\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
2. The element [tex]\(-7\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
3. The element [tex]\(-5\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
4. The element [tex]\(1\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
5. The element [tex]\(5\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
6. The element [tex]\(7\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
Therefore, the elements common to both sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are [tex]\(-9\)[/tex], [tex]\(5\)[/tex], and [tex]\(7\)[/tex].
So, the intersection [tex]\(A \cap B\)[/tex] is:
[tex]\[A \cap B = \{-9, 5, 7\}\][/tex]