What is the value of the expression when [tex]a=8, b=3[/tex], and [tex]c=6[/tex]?

[tex]\[ \left|a^2 - 2ac + 5b\right| \][/tex]

A. -65
B. -17
C. 17
D. 65



Answer :

To find the value of the expression [tex]\(\left|a^2 - 2ac + 5b\right|\)[/tex] when [tex]\(a = 8\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = 6\)[/tex], we follow these steps:

1. Substitute the given values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the expression [tex]\(a^2 - 2ac + 5b\)[/tex].
[tex]\[ a = 8, \quad b = 3, \quad c = 6 \][/tex]

2. Calculate [tex]\(a^2\)[/tex]:
[tex]\[ a^2 = 8^2 = 64 \][/tex]

3. Calculate [tex]\(-2ac\)[/tex]:
[tex]\[ -2ac = -2 \cdot 8 \cdot 6 = -96 \][/tex]

4. Calculate [tex]\(5b\)[/tex]:
[tex]\[ 5b = 5 \cdot 3 = 15 \][/tex]

5. Sum these results to find the value inside the absolute value:
[tex]\[ a^2 - 2ac + 5b = 64 - 96 + 15 \][/tex]

6. Perform the arithmetic operations step-by-step:
[tex]\[ 64 - 96 = -32 \][/tex]
[tex]\[ -32 + 15 = -17 \][/tex]

So, the expression inside the absolute value is [tex]\(-17\)[/tex].

7. Apply the absolute value:
[tex]\[ \left| -17 \right| = 17 \][/tex]

Therefore, the value of the expression [tex]\(\left|a^2 - 2ac + 5b\right|\)[/tex] is:

[tex]\[ \boxed{17} \][/tex]

So, the correct answer is:
C. 17