Rewrite the logarithmic function [tex]\log_b 62 = a[/tex] in exponential form.

A. [tex]a^b = 62[/tex]

B. [tex]b^a = 62[/tex]

C. [tex]62^b = a[/tex]

D. [tex]b^{62} = a[/tex]



Answer :

To rewrite the logarithmic function [tex]\(\log_b 62 = a\)[/tex] in exponential form, we start by recalling the basic definition of a logarithm:

[tex]\[ \log_b x = y \implies b^y = x \][/tex]

In the given logarithmic equation, [tex]\(\log_b 62 = a\)[/tex], we can identify [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(b\)[/tex]:

- [tex]\(x = 62\)[/tex]
- [tex]\(b\)[/tex] is the base of the logarithm
- [tex]\(a\)[/tex] is the logarithm value

Using the above definition, we can convert [tex]\(\log_b 62 = a\)[/tex] into its equivalent exponential form:

[tex]\[ b^a = 62 \][/tex]

Therefore, the correct exponential form of the given logarithmic function [tex]\(\log_b 62 = a\)[/tex] is:

[tex]\[ \boxed{b^a = 62} \][/tex]

This corresponds to option B.