Answer :

To solve the quadratic equation [tex]\( v^2 + 10v + 25 = 0 \)[/tex], we can use the quadratic formula, which is given by:

[tex]\[ v = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are the coefficients of the quadratic equation [tex]\(av^2 + bv + c = 0\)[/tex]. In our equation:

[tex]\[ a = 1, \quad b = 10, \quad c = 25 \][/tex]

First, we identify the discriminant, which is the part under the square root in the quadratic formula:

[tex]\[ \Delta = b^2 - 4ac \][/tex]

Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:

[tex]\[ \Delta = 10^2 - 4 \cdot 1 \cdot 25 = 100 - 100 = 0 \][/tex]

Since the discriminant is zero, we know there is only one unique solution for [tex]\(v\)[/tex], given by:

[tex]\[ v = \frac{-b}{2a} \][/tex]

Substituting the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:

[tex]\[ v = \frac{-10}{2 \cdot 1} = \frac{-10}{2} = -5 \][/tex]

Thus, the quadratic equation [tex]\(v^2 + 10v + 25 = 0\)[/tex] has a double root at:

[tex]\[ v = -5 \][/tex]

Therefore, the solutions to the quadratic equation are:

[tex]\[ v = -5, \quad v = -5 \][/tex]

These values can be represented as a double root [tex]\(v = -5\)[/tex].