Answer :
To solve the system of linear equations:
[tex]\[ \left\{ \begin{array}{c l} -c + 2d = 13 & \quad (1) \\ -9c - 4d = -15 & \quad (2) \end{array} \right. \][/tex]
we can use the substitution or elimination method. Here, we will use the substitution method. First, solve equation (1) for [tex]\(c\)[/tex]:
### Step 1: Solve equation (1) for [tex]\(c\)[/tex]
[tex]\[ -c + 2d = 13 \][/tex]
[tex]\[ -c = 13 - 2d \][/tex]
[tex]\[ c = 2d - 13 \][/tex]
### Step 2: Substitute [tex]\(c\)[/tex] into equation (2)
Substitute [tex]\(c = 2d - 13\)[/tex] into equation (2):
[tex]\[ -9(2d - 13) - 4d = -15 \][/tex]
[tex]\[ -18d + 117 - 4d = -15 \][/tex]
Combine like terms:
[tex]\[ -22d + 117 = -15 \][/tex]
### Step 3: Solve for [tex]\(d\)[/tex]
[tex]\[ -22d = -15 - 117 \][/tex]
[tex]\[ -22d = -132 \][/tex]
[tex]\[ d = \frac{-132}{-22} \][/tex]
[tex]\[ d = 6 \][/tex]
### Step 4: Substitute back to find [tex]\(c\)[/tex]
Substitute [tex]\(d = 6\)[/tex] back into equation for [tex]\(c\)[/tex]:
[tex]\[ c = 2d - 13 \][/tex]
[tex]\[ c = 2(6) - 13 \][/tex]
[tex]\[ c = 12 - 13 \][/tex]
[tex]\[ c = -1 \][/tex]
### Step 5: Verify the solution in both equations
Substitute [tex]\(c = -1\)[/tex] and [tex]\(d = 6\)[/tex] back into the original equations to verify:
Equation (1):
[tex]\[ -c + 2d = 13 \][/tex]
[tex]\[ -(-1) + 2(6) = 13 \][/tex]
[tex]\[ 1 + 12 = 13 \][/tex]
[tex]\[ 13 = 13 \quad \text{(True)} \][/tex]
Equation (2):
[tex]\[ -9c - 4d = -15 \][/tex]
[tex]\[ -9(-1) - 4(6) = -15 \][/tex]
[tex]\[ 9 - 24 = -15 \][/tex]
[tex]\[ -15 = -15 \quad \text{(True)} \][/tex]
Both equations hold true. Therefore, the ordered pair [tex]\((c, d) = (-1, 6)\)[/tex] is the solution to the system.
Thus, the correct answer is:
[tex]\[ (-1, 6) \][/tex]
[tex]\[ \left\{ \begin{array}{c l} -c + 2d = 13 & \quad (1) \\ -9c - 4d = -15 & \quad (2) \end{array} \right. \][/tex]
we can use the substitution or elimination method. Here, we will use the substitution method. First, solve equation (1) for [tex]\(c\)[/tex]:
### Step 1: Solve equation (1) for [tex]\(c\)[/tex]
[tex]\[ -c + 2d = 13 \][/tex]
[tex]\[ -c = 13 - 2d \][/tex]
[tex]\[ c = 2d - 13 \][/tex]
### Step 2: Substitute [tex]\(c\)[/tex] into equation (2)
Substitute [tex]\(c = 2d - 13\)[/tex] into equation (2):
[tex]\[ -9(2d - 13) - 4d = -15 \][/tex]
[tex]\[ -18d + 117 - 4d = -15 \][/tex]
Combine like terms:
[tex]\[ -22d + 117 = -15 \][/tex]
### Step 3: Solve for [tex]\(d\)[/tex]
[tex]\[ -22d = -15 - 117 \][/tex]
[tex]\[ -22d = -132 \][/tex]
[tex]\[ d = \frac{-132}{-22} \][/tex]
[tex]\[ d = 6 \][/tex]
### Step 4: Substitute back to find [tex]\(c\)[/tex]
Substitute [tex]\(d = 6\)[/tex] back into equation for [tex]\(c\)[/tex]:
[tex]\[ c = 2d - 13 \][/tex]
[tex]\[ c = 2(6) - 13 \][/tex]
[tex]\[ c = 12 - 13 \][/tex]
[tex]\[ c = -1 \][/tex]
### Step 5: Verify the solution in both equations
Substitute [tex]\(c = -1\)[/tex] and [tex]\(d = 6\)[/tex] back into the original equations to verify:
Equation (1):
[tex]\[ -c + 2d = 13 \][/tex]
[tex]\[ -(-1) + 2(6) = 13 \][/tex]
[tex]\[ 1 + 12 = 13 \][/tex]
[tex]\[ 13 = 13 \quad \text{(True)} \][/tex]
Equation (2):
[tex]\[ -9c - 4d = -15 \][/tex]
[tex]\[ -9(-1) - 4(6) = -15 \][/tex]
[tex]\[ 9 - 24 = -15 \][/tex]
[tex]\[ -15 = -15 \quad \text{(True)} \][/tex]
Both equations hold true. Therefore, the ordered pair [tex]\((c, d) = (-1, 6)\)[/tex] is the solution to the system.
Thus, the correct answer is:
[tex]\[ (-1, 6) \][/tex]