Which expression is equivalent to [tex]\left(\frac{4^{\frac{5}{4}} \cdot 4^{\frac{1}{4}}}{4^{\frac{1}{2}}}\right)^{\frac{1}{2}}[/tex]?

A. [tex]\sqrt[16]{4^5}[/tex]
B. [tex]\sqrt{2^5}[/tex]
C. 2
D. 4



Answer :

Let's simplify the given expression step-by-step:

[tex]\[ \left(\frac{4^{\frac{5}{4}} \cdot 4^{\frac{1}{4}}}{4^{\frac{1}{2}}}\right)^{\frac{1}{2}} \][/tex]

First, we simplify the expression inside the parentheses. We start with the numerator:

[tex]\[ 4^{\frac{5}{4}} \cdot 4^{\frac{1}{4}} \][/tex]

When multiplying powers with the same base, we add the exponents:

[tex]\[ 4^{\frac{5}{4}} \cdot 4^{\frac{1}{4}} = 4^{\frac{5}{4} + \frac{1}{4}} = 4^{\frac{6}{4}} = 4^{\frac{3}{2}} \][/tex]

Now we substitute [tex]\( 4^{\frac{3}{2}} \)[/tex] into the original expression:

[tex]\[ \left(\frac{4^{\frac{3}{2}}}{4^{\frac{1}{2}}}\right)^{\frac{1}{2}} \][/tex]

Next, we simplify the division inside the parentheses. When dividing powers with the same base, we subtract the exponents:

[tex]\[ \frac{4^{\frac{3}{2}}}{4^{\frac{1}{2}}} = 4^{\frac{3}{2} - \frac{1}{2}} = 4^{\frac{2}{2}} = 4^1 = 4 \][/tex]

Now we have:

[tex]\[ (4)^{\frac{1}{2}} \][/tex]

Taking the square root (equivalent to raising to the power of [tex]\(\frac{1}{2}\)[/tex]):

[tex]\[ 4^{\frac{1}{2}} = \sqrt{4} = 2 \][/tex]

Therefore, the expression equivalent to [tex]\(\left(\frac{4^{\frac{5}{4}} \cdot 4^{\frac{1}{4}}}{4^{\frac{1}{2}}}\right)^{\frac{1}{2}}\)[/tex] is:

[tex]\[ 2 \][/tex]

So, the correct answer is 2.