Simplify: [tex]3x^2 - 2x(3x - 4)[/tex]

A. [tex]3x^2 - 8[/tex]
B. [tex]-3x^2 + 8x[/tex]
C. [tex]-3x^2 - 8x[/tex]
D. [tex]3x^2 - 6x + 8[/tex]



Answer :

To simplify the expression [tex]\( 3x^2 - 2x(3x - 4) \)[/tex], we need to follow a series of steps involving basic algebraic operations. Let's break down the steps and compute the simplified expression:

1. Distribute the multiplication inside the second term:

[tex]\[ -2x(3x - 4) \][/tex]

Distributing [tex]\(-2x\)[/tex] inside the parenthesis:

[tex]\[ -2x \cdot 3x + (-2x) \cdot (-4) \][/tex]

[tex]\[ -6x^2 + 8x \][/tex]

2. Simplify the original expression by combining like terms:

The original expression is:

[tex]\[ 3x^2 - 2x(3x - 4) \][/tex]

Substituting the distributed result:

[tex]\[ 3x^2 - (6x^2 - 8x) \][/tex]

3. Distribute the negative sign:

[tex]\[ 3x^2 - 6x^2 + 8x \][/tex]

4. Combine like terms:

Combine the [tex]\(x^2\)[/tex] terms:

[tex]\[ (3x^2 - 6x^2) + 8x \][/tex]

[tex]\[ -3x^2 + 8x \][/tex]

After simplifying, we see the simplified expression is [tex]\(-3x^2 + 8x\)[/tex].

Given the choices:
- A: [tex]\( 3x^2 - 8 \)[/tex]
- B: [tex]\( -3x^2 + 8x \)[/tex]
- C: [tex]\( -3x^2 - 8x \)[/tex]
- D: [tex]\( 3x^2 - 6x + 8 \)[/tex]

The correct answer is:
B) [tex]\(-3x^2 + 8x\)[/tex].