Answer :

Certainly! Let’s solve the expression [tex]\(\frac{a^b}{a^{a-b}}\)[/tex] step-by-step.

First, recall the properties of exponents. One of the key properties we will use is:

[tex]\[ \frac{x^m}{x^n} = x^{m-n} \][/tex]

Given the expression:

[tex]\[ \frac{a^b}{a^{a-b}} \][/tex]

We can rewrite it using the property of exponents mentioned above:

[tex]\[ \frac{a^b}{a^{a-b}} = a^{b - (a-b)} \][/tex]

Now, let's simplify the exponent:

[tex]\[ b - (a - b) \][/tex]

We can distribute the negative sign inside the parentheses:

[tex]\[ b - a + b \][/tex]

Combine the like terms:

[tex]\[ b + b - a = 2b - a \][/tex]

So, the simplified form of the original expression [tex]\(\frac{a^b}{a^{a-b}}\)[/tex] is:

[tex]\[ a^{2b - a} \][/tex]

Therefore, the final answer is:

[tex]\[ a^{2b - a} \][/tex]