Answer :
Let's proceed to fill in the VSEPR table step-by-step.
First, we start with the initial information given and slot in the geometry names correctly based on the number of bonding domains and angles.
### Step-by-Step Solution
1. Linear Geometry:
- Domains: Linear geometry has 2 bonding pairs.
- Angle: [tex]\(180^\circ\)[/tex].
Therefore:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Geometry} & \text{Domains} & \text{Angle} \\ \hline \text{linear} & 2 \text{ bonding} & 180^\circ \\ \hline \end{array}\][/tex]
2. Trigonal Planar Geometry:
- Domains: Trigonal planar geometry has 3 bonding pairs.
- Angle: [tex]\(120^\circ\)[/tex].
Therefore:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Geometry} & \text{Domains} & \text{Angle} \\ \hline \text{linear} & 2 \text{ bonding} & 180^\circ \\ \hline \text{trigonal planar} & 3 \text{ bonding} & 120^\circ \\ \hline \end{array}\][/tex]
3. Bent Geometry (120 degrees):
- Domains: Bent geometry with an angle of [tex]\(<120^\circ\)[/tex] corresponds to a molecule with 2 bonding pairs and 1 lone pair.
- Angle: [tex]\(<120^\circ\)[/tex].
Therefore:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Geometry} & \text{Domains} & \text{Angle} \\ \hline \text{linear} & 2 \text{ bonding} & 180^\circ \\ \hline \text{trigonal planar} & 3 \text{ bonding} & 120^\circ \\ \hline \text{bent} & 2 \text{ bonding} / 1 \text{ lone pair} & <120^\circ \\ \hline \end{array}\][/tex]
4. Tetrahedral Geometry:
- Domains: Tetrahedral geometry has 4 bonding pairs.
- Angle: [tex]\(109.5^\circ\)[/tex].
Therefore:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Geometry} & \text{Domains} & \text{Angle} \\ \hline \text{linear} & 2 \text{ bonding} & 180^\circ \\ \hline \text{trigonal planar} & 3 \text{ bonding} & 120^\circ \\ \hline \text{bent} & 2 \text{ bonding} / 1 \text{ lone pair} & <120^\circ \\ \hline \text{tetrahedral} & 4 \text{ bonding} & 109.5^\circ \\ \hline \end{array}\][/tex]
5. Trigonal Pyramidal Geometry:
- Domains: Trigonal pyramidal geometry corresponds to a molecule with 3 bonding pairs and 1 lone pair.
- Angle: [tex]\(<109.5^\circ\)[/tex].
Therefore:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Geometry} & \text{Domains} & \text{Angle} \\ \hline \text{linear} & 2 \text{ bonding} & 180^\circ \\ \hline \text{trigonal planar} & 3 \text{ bonding} & 120^\circ \\ \hline \text{bent} & 2 \text{ bonding} / 1 \text{ lone pair} & <120^\circ \\ \hline \text{tetrahedral} & 4 \text{ bonding} & 109.5^\circ \\ \hline \text{trigonal pyramidal} & 3 \text{ bonding} / 1 \text{ lone pair} & <109.5^\circ \\ \hline \text{bent} & 2 \text{ bonding} / 2 \text{ lone pairs} & <109.5^\circ \\ \hline \end{array}\][/tex]
Now, the VSEPR table is complete with all the geometries, domains, and angles.
| Geometry | Domains | Angle |
|-----------------------|---------------------------|----------|
| linear | 2 bonding | 180° |
| trigonal planar | 3 bonding | 120° |
| bent | 2 bonding / 1 lone pair | <120° |
| tetrahedral | 4 bonding | 109.5° |
| trigonal pyramidal | 3 bonding / 1 lone pair | <109.5° |
| bent | 2 bonding / 2 lone pairs | <109.5° |
First, we start with the initial information given and slot in the geometry names correctly based on the number of bonding domains and angles.
### Step-by-Step Solution
1. Linear Geometry:
- Domains: Linear geometry has 2 bonding pairs.
- Angle: [tex]\(180^\circ\)[/tex].
Therefore:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Geometry} & \text{Domains} & \text{Angle} \\ \hline \text{linear} & 2 \text{ bonding} & 180^\circ \\ \hline \end{array}\][/tex]
2. Trigonal Planar Geometry:
- Domains: Trigonal planar geometry has 3 bonding pairs.
- Angle: [tex]\(120^\circ\)[/tex].
Therefore:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Geometry} & \text{Domains} & \text{Angle} \\ \hline \text{linear} & 2 \text{ bonding} & 180^\circ \\ \hline \text{trigonal planar} & 3 \text{ bonding} & 120^\circ \\ \hline \end{array}\][/tex]
3. Bent Geometry (120 degrees):
- Domains: Bent geometry with an angle of [tex]\(<120^\circ\)[/tex] corresponds to a molecule with 2 bonding pairs and 1 lone pair.
- Angle: [tex]\(<120^\circ\)[/tex].
Therefore:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Geometry} & \text{Domains} & \text{Angle} \\ \hline \text{linear} & 2 \text{ bonding} & 180^\circ \\ \hline \text{trigonal planar} & 3 \text{ bonding} & 120^\circ \\ \hline \text{bent} & 2 \text{ bonding} / 1 \text{ lone pair} & <120^\circ \\ \hline \end{array}\][/tex]
4. Tetrahedral Geometry:
- Domains: Tetrahedral geometry has 4 bonding pairs.
- Angle: [tex]\(109.5^\circ\)[/tex].
Therefore:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Geometry} & \text{Domains} & \text{Angle} \\ \hline \text{linear} & 2 \text{ bonding} & 180^\circ \\ \hline \text{trigonal planar} & 3 \text{ bonding} & 120^\circ \\ \hline \text{bent} & 2 \text{ bonding} / 1 \text{ lone pair} & <120^\circ \\ \hline \text{tetrahedral} & 4 \text{ bonding} & 109.5^\circ \\ \hline \end{array}\][/tex]
5. Trigonal Pyramidal Geometry:
- Domains: Trigonal pyramidal geometry corresponds to a molecule with 3 bonding pairs and 1 lone pair.
- Angle: [tex]\(<109.5^\circ\)[/tex].
Therefore:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Geometry} & \text{Domains} & \text{Angle} \\ \hline \text{linear} & 2 \text{ bonding} & 180^\circ \\ \hline \text{trigonal planar} & 3 \text{ bonding} & 120^\circ \\ \hline \text{bent} & 2 \text{ bonding} / 1 \text{ lone pair} & <120^\circ \\ \hline \text{tetrahedral} & 4 \text{ bonding} & 109.5^\circ \\ \hline \text{trigonal pyramidal} & 3 \text{ bonding} / 1 \text{ lone pair} & <109.5^\circ \\ \hline \text{bent} & 2 \text{ bonding} / 2 \text{ lone pairs} & <109.5^\circ \\ \hline \end{array}\][/tex]
Now, the VSEPR table is complete with all the geometries, domains, and angles.
| Geometry | Domains | Angle |
|-----------------------|---------------------------|----------|
| linear | 2 bonding | 180° |
| trigonal planar | 3 bonding | 120° |
| bent | 2 bonding / 1 lone pair | <120° |
| tetrahedral | 4 bonding | 109.5° |
| trigonal pyramidal | 3 bonding / 1 lone pair | <109.5° |
| bent | 2 bonding / 2 lone pairs | <109.5° |