Here is a bivariate data set.
\begin{tabular}{|r|c|}
\hline[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline 70.6 & 45.8 \\
\hline 17.3 & 46.1 \\
\hline 52.8 & 41.6 \\
\hline 87.9 & 42.2 \\
\hline 15 & 36.6 \\
\hline 47.1 & 43.4 \\
\hline 44.9 & 46.2 \\
\hline 28.9 & 39.3 \\
\hline
\end{tabular}

This data can be downloaded as a *.csv file with this link: Download CSV.

1. Find the correlation coefficient and report it accurate to three decimal places.

[tex]\[
r = \square
\][/tex]

2. What proportion of the variation in [tex]$y$[/tex] can be explained by the variation in the values of [tex]$x$[/tex]? Report your answer as a percentage accurate to one decimal place.

[tex]\[
R^2 = \quad \%\ \square
\][/tex]



Answer :

Sure, let's walk through the process step-by-step to find the correlation coefficient and the proportion of the variation in [tex]\( y \)[/tex] that can be explained by [tex]\( x \)[/tex].

### Step 1: Data Points

We start with the given bivariate data set:

[tex]\[ \begin{array}{|r|c|} \hline x & y \\ \hline 70.6 & 45.8 \\ \hline 17.3 & 46.1 \\ \hline 52.8 & 41.6 \\ \hline 87.9 & 42.2 \\ \hline 15.0 & 36.6 \\ \hline 47.1 & 43.4 \\ \hline 44.9 & 46.2 \\ \hline 28.9 & 39.3 \\ \hline \end{array} \][/tex]

### Step 2: Correlation Coefficient

1. Mean of each variable

Calculate the mean of [tex]\( x \)[/tex] ([tex]\( \overline{x} \)[/tex]) and [tex]\( y \)[/tex] ([tex]\( \overline{y} \)[/tex]).

2. Deviation Scores

Calculate the deviation of each value from the mean for both [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

3. Product of Deviations

Multiply the deviation of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] for each pair.

4. Sum of the Products

Sum these products to get the numerator of the correlation coefficient formula.

5. Square Deviations & Sum

Calculate the square deviations for both [tex]\( x \)[/tex] and [tex]\( y \)[/tex], sum them up separately for the denominator of the correlation formula.

6. Correlation Formula

The correlation coefficient formula is:
[tex]\[ r = \frac{\sum{(x_i - \overline{x})(y_i - \overline{y})}}{\sqrt{\sum{(x_i - \overline{x})^2} \sum{(y_i - \overline{y})^2}}} \][/tex]

Using this process, we find that the correlation coefficient is [tex]\( r = 0.316 \)[/tex] (to three decimal places).

### Step 3: Proportion of Variation

1. Coefficient of Determination

The coefficient of determination, [tex]\( R^2 \)[/tex], represents the proportion of the variance in the dependent variable that is predictable from the independent variable. It is the square of the correlation coefficient:
[tex]\[ R^2 = r^2 = (0.316)^2 = 0.10 \][/tex]

2. Convert to Percentage

Convert the coefficient of determination to a percentage by multiplying by 100:
[tex]\[ \text{Percentage of variation} = R^2 \times 100 = 0.10 \times 100 = 10.0\% \][/tex]

### Final Results

- The correlation coefficient [tex]\( r = 0.316 \)[/tex].
- The proportion of the variation in [tex]\( y \)[/tex] that can be explained by [tex]\( x \)[/tex] is [tex]\( 10.0\% \)[/tex].

Thus, the results are:

[tex]\[ r = 0.316 \][/tex]

[tex]\[ R^2 = 10.0\% \][/tex]