Answer :

To solve the equation [tex]\((x-5)^{\frac{3}{4}} + 10 = 12\)[/tex], we will isolate [tex]\(x\)[/tex]. Let's follow the steps systematically:

1. Isolate the term with [tex]\(x\)[/tex]:
[tex]\[ (x-5)^{\frac{3}{4}} + 10 = 12 \][/tex]
Subtract 10 from both sides:
[tex]\[ (x-5)^{\frac{3}{4}} = 2 \][/tex]

2. Eliminate the exponent [tex]\(\frac{3}{4}\)[/tex]:
To do this, raise both sides to the power of [tex]\(\frac{4}{3}\)[/tex], which is the reciprocal of [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \left( (x-5)^{\frac{3}{4}} \right)^{\frac{4}{3}} = 2^{\frac{4}{3}} \][/tex]
Simplifying the left side, we get:
[tex]\[ x - 5 = 2^{\frac{4}{3}} \][/tex]

3. Solve for [tex]\(x\)[/tex]:
Add 5 to both sides:
[tex]\[ x = 2^{\frac{4}{3}} + 5 \][/tex]

4. Simplify the right side:
Let's interpret [tex]\(2^{\frac{4}{3}}\)[/tex]:
[tex]\[ 2^{\frac{4}{3}} = \left( 2^4 \right)^{\frac{1}{3}} = 16^{\frac{1}{3}} \][/tex]

[tex]\(16\)[/tex] can be rewritten as [tex]\(2^4\)[/tex], so:
[tex]\[ 16^{\frac{1}{3}} = (2^4)^{\frac{1}{3}} = 2^{\frac{4}{3}} \][/tex]

Therefore:
[tex]\[ 2^{\frac{4}{3}} = \sqrt[3]{16} \][/tex]

5. Combine the terms:
[tex]\[ x = \sqrt[3]{16} + 5 \][/tex]

Thus, the solution to the equation [tex]\((x-5)^{\frac{3}{4}} + 10 = 12\)[/tex] is:
[tex]\[ x = \sqrt[3]{16} + 5 \][/tex]