Answer :

Sure, let's go through the calculation step by step.

1. Identify the components of the expression:

We have:
- A principal amount: [tex]\( P = 600 \)[/tex]
- An interest rate: [tex]\( r = 0.02 \)[/tex]
- A number of periods: [tex]\( n = 12 \)[/tex]

2. Break down the expression inside the brackets:

We need to calculate:
[tex]\[ \left[\frac{1 - (1 + r)^{-n}}{r}\right] \][/tex]

Substitute the known values of [tex]\( r \)[/tex] and [tex]\( n \)[/tex]:
[tex]\[ \left[\frac{1 - (1 + 0.02)^{-12}}{0.02}\right] \][/tex]

3. Calculate the term [tex]\( (1 + r)^{-n} \)[/tex]:

[tex]\[ (1 + 0.02)^{-12} \][/tex]

The value of [tex]\( (1 + 0.02)^{-12} \approx 0.7884937089293345 \)[/tex].

4. Subtract this result from 1:

[tex]\[ 1 - 0.7884937089293345 = 0.21150629107066554 \][/tex]

5. Divide by [tex]\( r \)[/tex]:

[tex]\[ \frac{0.21150629107066554}{0.02} \approx 10.575341220917188 \][/tex]

This is the value inside the brackets.

6. Multiply by [tex]\( P \)[/tex]:

[tex]\[ P \times \left[\frac{1 - (1 + r)^{-n}}{r}\right] \][/tex]

Substitute [tex]\( P = 600 \)[/tex] and the value inside the brackets:

[tex]\[ 600 \times 10.575341220917188 \approx 6345.204732550313 \][/tex]

So, the final result is:

[tex]\[ 6345.204732550313 \][/tex]

Therefore, the expression [tex]\( 600\left[\frac{1-(1+0.02)^{-12}}{0.02}\right] \)[/tex] evaluates to approximately 6345.204732550313.