Which choice is equivalent to the fraction below when [tex]$x \geq 1$[/tex]?

Hint: Rationalize the denominator and simplify.

[tex]
\frac{1}{\sqrt{x}-\sqrt{x-1}}
[/tex]

A. [tex]\frac{\sqrt{x}+\sqrt{x-1}}{2x-1}[/tex]

B. [tex]\sqrt{x}-\sqrt{x-1}[/tex]

C. [tex]-\sqrt{x}-\sqrt{x-1}[/tex]

D. [tex]\sqrt{x}+\sqrt{x-1}[/tex]



Answer :

To determine which choice is equivalent to the fraction [tex]\(\frac{1}{\sqrt{x} - \sqrt{x-1}}\)[/tex] when [tex]\(x \geq 1\)[/tex], we can rationalize the denominator. Here are the detailed steps:

1. Given Expression:
[tex]\[ \frac{1}{\sqrt{x} - \sqrt{x-1}} \][/tex]

2. Multiply by the Conjugate:
We multiply the numerator and the denominator by the conjugate of the denominator, [tex]\(\sqrt{x} + \sqrt{x-1}\)[/tex], to rationalize it.
[tex]\[ \frac{1}{\sqrt{x} - \sqrt{x-1}} \cdot \frac{\sqrt{x} + \sqrt{x-1}}{\sqrt{x} + \sqrt{x-1}} \][/tex]

3. Simplify the Denominator:
[tex]\[ (\sqrt{x} - \sqrt{x-1})(\sqrt{x} + \sqrt{x-1}) = (\sqrt{x})^2 - (\sqrt{x-1})^2 = x - (x-1) = x - x + 1 = 1 \][/tex]

4. Simplify the Expression:
Since the denominator becomes 1, the numerator remains:
[tex]\[ \frac{\sqrt{x} + \sqrt{x-1}}{1} = \sqrt{x} + \sqrt{x-1} \][/tex]

Therefore, the fraction simplifies to [tex]\(\sqrt{x} + \sqrt{x-1}\)[/tex].

The correct equivalent expression is [tex]\(\sqrt{x} + \sqrt{x-1}\)[/tex], which corresponds to option (D):

[tex]\[ \boxed{\sqrt{x}+\sqrt{x-1}} \][/tex]