Find the general indefinite integral. (Use [tex]$C$[/tex] for the constant of integration.)

[tex]\[ \int (8t^3 - 6t^{-2}) \, dt \][/tex]

Evaluate the definite integral.

[tex]\[ \int_2^6 (8t^3 - 6t^{-2}) \, dt \][/tex]



Answer :

Sure! Let's go through the solution step by step.

### Part 1: General Indefinite Integral

We need to find the general indefinite integral of the function [tex]\( 8t^3 - 6t^{-2} \)[/tex].

[tex]\[ \int (8t^3 - 6t^{-2}) \, dt \][/tex]

We'll break this down by integrating each term separately.

1. For the first term [tex]\( 8t^3 \)[/tex]:
[tex]\[ \int 8t^3 \, dt \][/tex]
Using the power rule of integration [tex]\( \int t^n \, dt = \frac{t^{n+1}}{n+1} \)[/tex]:

[tex]\[ \int 8t^3 \, dt = 8 \cdot \frac{t^{3+1}}{3+1} = 8 \cdot \frac{t^4}{4} = 2t^4 \][/tex]

2. For the second term [tex]\( -6t^{-2} \)[/tex]:
[tex]\[ \int -6t^{-2} \, dt \][/tex]
Again using the power rule:

[tex]\[ \int -6t^{-2} \, dt = -6 \cdot \frac{t^{-2+1}}{-2+1} = -6 \cdot \frac{t^{-1}}{-1} = 6t^{-1} = \frac{6}{t} \][/tex]

Summing these results, we get:

[tex]\[ \int (8t^3 - 6t^{-2}) \, dt = 2t^4 + \frac{6}{t} + C \][/tex]

So, the general indefinite integral is:

[tex]\[ 2t^4 + \frac{6}{t} + C \][/tex]

### Part 2: Definite Integral

Now, we need to evaluate the definite integral of the function [tex]\( 8t^3 - 6t^{-2} \)[/tex] from [tex]\( t = 2 \)[/tex] to [tex]\( t = 6 \)[/tex]:

[tex]\[ \int_2^6 (8t^3 - 6t^{-2}) \, dt \][/tex]

We use the antiderivative we found previously and evaluate it at the upper and lower bounds, then take the difference.

Using the antiderivative [tex]\( 2t^4 + \frac{6}{t} \)[/tex]:

1. Evaluate at [tex]\( t = 6 \)[/tex]:
[tex]\[ 2(6)^4 + \frac{6}{6} = 2 \cdot 1296 + 1 = 2592 + 1 = 2593 \][/tex]

2. Evaluate at [tex]\( t = 2 \)[/tex]:
[tex]\[ 2(2)^4 + \frac{6}{2} = 2 \cdot 16 + 3 = 32 + 3 = 35 \][/tex]

Now, subtract the value at the lower bound from the value at the upper bound:

[tex]\[ 2593 - 35 = 2558 \][/tex]

So, the definite integral is:

[tex]\[ \int_2^6 (8t^3 - 6t^{-2}) \, dt = 2558 \][/tex]

### Summary

- The general indefinite integral of [tex]\( 8t^3 - 6t^{-2} \)[/tex] is:

[tex]\[ 2t^4 + \frac{6}{t} + C \][/tex]

- The value of the definite integral of [tex]\( 8t^3 - 6t^{-2} \)[/tex] from [tex]\( t = 2 \)[/tex] to [tex]\( t = 6 \)[/tex] is:

[tex]\[ 2558 \][/tex]