What is the solution to the equation below?

[tex]\[ -2 + \sqrt{3x - 2} = 6 \][/tex]

A. [tex]\( x = 6 \)[/tex]

B. [tex]\( x = \frac{10}{3} \)[/tex]

C. [tex]\( x = \frac{62}{3} \)[/tex]

D. [tex]\( x = 22 \)[/tex]



Answer :

To solve the equation [tex]\(-2 + \sqrt{3x - 2} = 6\)[/tex], follow these steps:

1. Isolate the square root term:
[tex]\[ -2 + \sqrt{3x - 2} = 6 \][/tex]
Add [tex]\(2\)[/tex] to both sides of the equation:
[tex]\[ \sqrt{3x - 2} = 6 + 2 \][/tex]
Simplify:
[tex]\[ \sqrt{3x - 2} = 8 \][/tex]

2. Remove the square root by squaring both sides of the equation:
[tex]\[ (\sqrt{3x - 2})^2 = 8^2 \][/tex]
Simplify:
[tex]\[ 3x - 2 = 64 \][/tex]

3. Solve for [tex]\(x\)[/tex]:
Add [tex]\(2\)[/tex] to both sides of the equation:
[tex]\[ 3x - 2 + 2 = 64 + 2 \][/tex]
Simplify:
[tex]\[ 3x = 66 \][/tex]
Divide both sides by [tex]\(3\)[/tex]:
[tex]\[ x = \frac{66}{3} \][/tex]
Simplify:
[tex]\[ x = 22 \][/tex]

Therefore, the solution to the equation [tex]\(-2 + \sqrt{3x - 2} = 6\)[/tex] is [tex]\(x = 22\)[/tex].

Hence, the correct answer is [tex]\( \boxed{22} \)[/tex].