What is the solution to the equation below?

[tex]\[ \sqrt{x+2} = x - 4 \][/tex]

A. [tex]\( x = 6 \)[/tex]

B. [tex]\( x = 2 \)[/tex]

C. [tex]\( x = 7 \)[/tex]

D. [tex]\( x = 3 \)[/tex]



Answer :

To solve the equation [tex]\(\sqrt{x + 2} = x - 4\)[/tex], we can follow these steps:

1. Isolate the square root: The square root is already isolated on the left side of the equation.

[tex]\[ \sqrt{x + 2} = x - 4 \][/tex]

2. Square both sides to eliminate the square root:

[tex]\[ (\sqrt{x + 2})^2 = (x - 4)^2 \][/tex]

This simplifies to:

[tex]\[ x + 2 = (x - 4)^2 \][/tex]

3. Expand the right side: We need to expand [tex]\( (x - 4)^2 \)[/tex]:

[tex]\[ x + 2 = x^2 - 8x + 16 \][/tex]

4. Rearrange the equation to form a standard quadratic equation. Move all terms to one side:

[tex]\[ 0 = x^2 - 8x + 16 - x - 2 \][/tex]

Combine like terms:

[tex]\[ 0 = x^2 - 9x + 14 \][/tex]

5. Solve the quadratic equation [tex]\( x^2 - 9x + 14 = 0 \)[/tex]. We can factorize it if possible:

[tex]\[ (x - 7)(x - 2) = 0 \][/tex]

Setting each factor equal to zero gives:

[tex]\[ x - 7 = 0 \quad \text{or} \quad x - 2 = 0 \][/tex]

This means:

[tex]\[ x = 7 \quad \text{or} \quad x = 2 \][/tex]

6. Verify the solutions: We need to check both potential solutions in the original equation to confirm they hold true.

For [tex]\( x = 7 \)[/tex]:

[tex]\[ \sqrt{7 + 2} = 7 - 4 \][/tex]

[tex]\[ \sqrt{9} = 3 \quad \Rightarrow \quad 3 = 3 \quad \text{(True)} \][/tex]

For [tex]\( x = 2 \)[/tex]:

[tex]\[ \sqrt{2 + 2} = 2 - 4 \][/tex]

[tex]\[ \sqrt{4} = -2 \quad \Rightarrow \quad 2 = -2 \quad \text{(False)} \][/tex]

Thus, [tex]\( x = 2 \)[/tex] is not a valid solution since it does not satisfy the original equation.

7. Conclusion: The only solution that satisfies the equation is:

[tex]\[ x = 7 \][/tex]

Therefore, the correct answer is:

C. [tex]\( x = 7 \)[/tex]