Subtract [tex]15mn - 22m + 2n[/tex] from [tex]14mn - 12m + 7n[/tex].

A. [tex]-mn + 10m + 5n[/tex]
B. [tex]-mn - 34m + 5n[/tex]
C. [tex]-mn - 34m + 9n[/tex]
D. [tex]29mn - 34m + 5n[/tex]



Answer :

Let's work through the subtraction step by step.

We start with two expressions:

1. [tex]\( 14mn - 12m + 7n \)[/tex]
2. [tex]\( 15mn - 22m + 2n \)[/tex]

We need to subtract the second expression from the first one.

1. [tex]\( 14mn - 12m + 7n \)[/tex]
2. [tex]\(- (15mn - 22m + 2n) \)[/tex]

When we distribute the negative sign across the terms in the second expression, we get:

[tex]\[ - 15mn + 22m - 2n \][/tex]

Now, we can rewrite the subtraction as an addition of the negated second expression to the first expression:

[tex]\[ (14mn - 12m + 7n) + (- 15mn + 22m - 2n) \][/tex]

Next, combine like terms:

1. Combine the [tex]\( mn \)[/tex] terms:
[tex]\[ 14mn - 15mn = -mn \][/tex]

2. Combine the [tex]\( m \)[/tex] terms:
[tex]\[ -12m + 22m = 10m \][/tex]

3. Combine the [tex]\( n \)[/tex] terms:
[tex]\[ 7n - 2n = 5n \][/tex]

Thus, when we combine all these results, we get:

[tex]\[ -mn + 10m + 5n \][/tex]

Therefore, the final simplified result of subtracting [tex]\( 15mn - 22m + 2n \)[/tex] from [tex]\( 14mn - 12m + 7n \)[/tex] is:

[tex]\[ -mn + 10m + 5n \][/tex]