What is the solution to the equation below?

[tex]\[
11 + \sqrt{1 - 3x} = 15
\][/tex]

A. [tex]\( x = -1 \)[/tex]
B. [tex]\( x = 1 \)[/tex]
C. [tex]\( x = 5 \)[/tex]
D. [tex]\( x = -5 \)[/tex]



Answer :

To solve the equation [tex]\( 11 + \sqrt{1 - 3x} = 15 \)[/tex] for [tex]\( x \)[/tex], we can follow these steps:

1. Isolate the square root term:
- We start by subtracting 11 from both sides of the equation:
[tex]\[ 11 + \sqrt{1 - 3x} - 11 = 15 - 11 \][/tex]
- Simplifying both sides, we get:
[tex]\[ \sqrt{1 - 3x} = 4 \][/tex]

2. Remove the square root by squaring both sides:
- To eliminate the square root, we square both sides of the equation:
[tex]\[ (\sqrt{1 - 3x})^2 = 4^2 \][/tex]
- Simplifying, we obtain:
[tex]\[ 1 - 3x = 16 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
- First, isolate the term containing [tex]\( x \)[/tex] by subtracting 1 from both sides:
[tex]\[ 1 - 3x - 1 = 16 - 1 \][/tex]
- This simplifies to:
[tex]\[ -3x = 15 \][/tex]
- Finally, divide both sides by -3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{15}{-3} \][/tex]
- Simplifying this, we get:
[tex]\[ x = -5 \][/tex]

Therefore, the solution to the equation [tex]\( 11 + \sqrt{1 - 3x} = 15 \)[/tex] is [tex]\( x = -5 \)[/tex].

The correct answer is:
D. [tex]\( x = -5 \)[/tex]