If you use spray-on deodorant, you can find out how fast it comes out of the can if you know the relative pressure inside the can. Supposing a full can of deodorant has an exit velocity [tex]$v$[/tex] of 42 feet per second, use the formula below to find the relative pressure inside the can [tex]$p$[/tex] in psi (pounds per square inch):

[tex]v = 7 \sqrt{p}[/tex]

A. 45 psi
B. 35 psi
C. 36 psi
D. 49 psi



Answer :

To find the relative pressure inside the can ([tex]\( p \)[/tex]) given the exit velocity ([tex]\( v \)[/tex]) of 42 feet per second, we can use the given formula:
[tex]\[ v = 7 \sqrt{p} \][/tex]

### Step-by-Step Solution:

1. Substitute the given velocity into the formula:
[tex]\[ 42 = 7 \sqrt{p} \][/tex]

2. Isolate the square root of [tex]\( p \)[/tex]:
Divide both sides of the equation by 7:
[tex]\[ \frac{42}{7} = \sqrt{p} \][/tex]
[tex]\[ 6 = \sqrt{p} \][/tex]

3. Eliminate the square root by squaring both sides:
[tex]\[ (6)^2 = (\sqrt{p})^2 \][/tex]
[tex]\[ 36 = p \][/tex]

The calculated relative pressure [tex]\( p \)[/tex] is 36 psi.

### Verification:

To ensure we have interpreted the results correctly, we round [tex]\( p \)[/tex] to the nearest integer if necessary. Here, [tex]\( p \)[/tex] is already an integer (36).

### Conclusion:

Thus, the relative pressure inside the can is:
[tex]\[ \boxed{36} \][/tex]

Correct Option:
C. 36 psi