Simplify the expression below as much as possible.

[tex]\[ (7 + 10i) + (4 - 10i) - (7 - 5i) \][/tex]

A. [tex]\[ 4 + 25i \][/tex]

B. [tex]\[ 4 + 15i \][/tex]

C. [tex]\[ 4 + 5i \][/tex]

D. [tex]\[ 4 - 5i \][/tex]



Answer :

To simplify the expression [tex]\((7+10i)+(4-10i)-(7-5i)\)[/tex], follow these steps:

1. Group the real and imaginary parts separately:
- Real parts: [tex]\(7 + 4 - 7\)[/tex]
- Imaginary parts: [tex]\(10i - 10i - (-5i)\)[/tex]

2. Combine the real parts:
- Add and subtract the real numbers:
[tex]\[ 7 + 4 - 7 = 4 \][/tex]

3. Combine the imaginary parts:
- Add and subtract the imaginary numbers:
[tex]\[ 10i - 10i + 5i = 5i \][/tex]

4. Combine the results to form the simplified expression:
- Real part [tex]\(4\)[/tex] and imaginary part [tex]\(5i\)[/tex] give us:
[tex]\[ 4 + 5i \][/tex]

Therefore, the simplified expression is [tex]\(4 + 5i\)[/tex].

The correct answer is [tex]\( \boxed{4+5i} \)[/tex], which corresponds to option C.