Find the difference of the complex numbers.

[tex]\[ (7 + 3i) - (3 - 7i) \][/tex]

A. [tex]\[4 + 10i\][/tex]

B. [tex]\[4 - 4i\][/tex]

C. [tex]\[10 + 10i\][/tex]

D. [tex]\[10 - 4i\][/tex]



Answer :

To find the difference between the complex numbers [tex]\(7 + 3i\)[/tex] and [tex]\(3 - 7i\)[/tex], we subtract the second complex number from the first.

Let's break down the process step by step:

1. Write down the complex numbers:
[tex]\[ z_1 = 7 + 3i \quad \text{and} \quad z_2 = 3 - 7i \][/tex]

2. Set up the subtraction:
[tex]\[ (7 + 3i) - (3 - 7i) \][/tex]

3. Distribute the negative sign across [tex]\( (3 - 7i) \)[/tex]:
[tex]\[ 7 + 3i - 3 + 7i \][/tex]

4. Combine the real parts and the imaginary parts separately:
- Real parts: [tex]\(7 - 3 = 4\)[/tex]
- Imaginary parts: [tex]\(3i + 7i = 10i\)[/tex]

5. Combine the results:
[tex]\[ 4 + 10i \][/tex]

So, the difference between the complex numbers [tex]\(7 + 3i\)[/tex] and [tex]\(3 - 7i\)[/tex] is [tex]\(4 + 10i\)[/tex].

Therefore, the correct answer is:

A. [tex]\(4 + 10i\)[/tex]