Simplify the expression below as much as possible.

[tex]\[ (8 + 5i) + (10 + 6i) - (3 + 6i) \][/tex]

A. [tex]\(15 + 5i\)[/tex]

B. [tex]\(21 + 5i\)[/tex]

C. [tex]\(15 + 17i\)[/tex]

D. [tex]\(21 + 17i\)[/tex]



Answer :

To simplify the expression [tex]\((8 + 5i) + (10 + 6i) - (3 + 6i)\)[/tex], we can follow these step-by-step instructions:

1. Combine the real parts of the complex numbers:
- The real parts of the complex numbers are [tex]\(8\)[/tex], [tex]\(10\)[/tex], and [tex]\(3\)[/tex].
- Add and subtract the real parts:
[tex]\[ 8 + 10 - 3 = 15 \][/tex]

2. Combine the imaginary parts of the complex numbers:
- The imaginary parts of the complex numbers are [tex]\(5i\)[/tex], [tex]\(6i\)[/tex], and [tex]\(6i\)[/tex].
- Add and subtract the imaginary parts:
[tex]\[ 5i + 6i - 6i = 5i \][/tex]

3. Combine the results from the real and imaginary parts:
- After combining, we get:
[tex]\[ 15 + 5i \][/tex]

Thus, the simplified expression is [tex]\(15 + 5i\)[/tex].

The correct answer is:
[tex]\[ \boxed{A. \; 15 + 5i} \][/tex]