Answered

A voltaic cell prepared using aluminum and nickel has the following cell notation:
[tex]\[ Al (s)\left| Al ^{3+}(a q) \| Ni ^{2+}(a q)\right| Ni (s) \][/tex]

Which of the following represents the correctly balanced spontaneous reaction equation for the cell?

A. [tex]\[ Ni ^{2+}(a q) + Al (s) \rightarrow \operatorname{Al}^{3+}(a q) + Ni (s) \][/tex]

B. [tex]\[ 3 Ni ^{2+}(a q) + 2 Al (s) \rightarrow 2 Al ^{3+}(a q) + 3 Ni (s) \][/tex]

C. [tex]\[ Ni (s) + Al ^{3+}(a q) \rightarrow Ni ^{2+}(a q) + Al (s) \][/tex]

D. [tex]\[ 3 Ni (s) + 2 Al ^{3+}(a q) \rightarrow 3 Ni ^{2+}(a q) + 2 Al (s) \][/tex]



Answer :

To determine the correctly balanced spontaneous reaction equation for the voltaic cell with the given cell notation [tex]\( \text{Al (s)} \left| \text{Al}^{3+}(aq) \| \text{Ni}^{2+}(aq) \right| \text{Ni (s)} \)[/tex], let's follow these steps:

1. Identify Oxidation and Reduction Half-Reactions:
- Oxidation Half-Reaction (Anode):
Since aluminum is being oxidized, the oxidation half-reaction is:
[tex]\[ \text{Al} (s) \rightarrow \text{Al}^{3+} (aq) + 3e^- \][/tex]

- Reduction Half-Reaction (Cathode):
Since nickel is being reduced, the reduction half-reaction is:
[tex]\[ \text{Ni}^{2+} (aq) + 2e^- \rightarrow \text{Ni} (s) \][/tex]

2. Balance Electrons in Both Half-Reactions:
- To balance electrons, the number of electrons lost in the oxidation reaction must equal the number of electrons gained in the reduction reaction. Here, we need a common multiple for the electrons:
- Multiplying the oxidation half-reaction by 2 (to have [tex]\(6e^-\)[/tex]):
[tex]\[ 2\text{Al} (s) \rightarrow 2\text{Al}^{3+}(aq) + 6e^- \][/tex]
- Multiplying the reduction half-reaction by 3 (to have [tex]\(6e^-\)[/tex]):
[tex]\[ 3\text{Ni}^{2+} (aq) + 6e^- \rightarrow 3\text{Ni} (s) \][/tex]

3. Add the Two Half-Reactions Together:
- Now, combine the two balanced half-reactions:
[tex]\[ 2\text{Al} (s) \rightarrow 2\text{Al}^{3+}(aq) + 6e^- \][/tex]
[tex]\[ 3\text{Ni}^{2+} (aq) + 6e^- \rightarrow 3\text{Ni} (s) \][/tex]
- The electrons will cancel out:
[tex]\[ 3\text{Ni}^{2+}(aq) + 2\text{Al}(s) \rightarrow 2\text{Al}^{3+}(aq) + 3\text{Ni}(s) \][/tex]

4. Conclusion:
- The correctly balanced spontaneous reaction equation is:
[tex]\[ 3\text{Ni}^{2+}(aq) + 2\text{Al}(s) \rightarrow 2\text{Al}^{3+}(aq) + 3\text{Ni}(s) \][/tex]

Therefore, the correct answer is:

[tex]\[ 3 \text{Ni}^{2+}(aq) + 2 \text{Al}(s) \rightarrow 2 \text{Al}^{3+}(aq) + 3 \text{Ni}(s) \][/tex]