Given the function [tex]$f(x) = 450(0.65)^x$[/tex], evaluate each of the following. Note: Round your answers to two decimal places as needed.

\begin{tabular}{|l|c|}
\hline
A) Evaluate [tex]$f(-10)$[/tex] & [tex]$f(-10) = \square$[/tex] \\
\hline
B) Evaluate [tex][tex]$f(-5)$[/tex][/tex] & [tex]$f(-5) = \square$[/tex] \\
\hline
C) Evaluate [tex]$f(0)$[/tex] & [tex]$f(0) = 450$[/tex] \\
\hline
D) Evaluate [tex][tex]$f(5)$[/tex][/tex] & [tex]$f(5) = \square$[/tex] \\
\hline
E) Evaluate [tex]$f(10)$[/tex] & [tex]$f(10) = \square$[/tex] \\
\hline
\end{tabular}



Answer :

Sure, let's evaluate the function [tex]\( f(x) = 450 \times (0.65)^x \)[/tex] at the specified points.

### A) Evaluate [tex]\( f(-10) \)[/tex]

To find [tex]\( f(-10) \)[/tex]:
[tex]\[ f(-10) = 450 \times (0.65)^{-10} \][/tex]
Using this exponent value, we find:
[tex]\[ f(-10) \approx 33425.58 \][/tex]

### B) Evaluate [tex]\( f(-5) \)[/tex]

To find [tex]\( f(-5) \)[/tex]:
[tex]\[ f(-5) = 450 \times (0.65)^{-5} \][/tex]
Using this exponent value, we find:
[tex]\[ f(-5) \approx 3878.34 \][/tex]

### C) Evaluate [tex]\( f(0) \)[/tex]

To find [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 450 \times (0.65)^0 \][/tex]
Since any number to the power of zero is 1,
[tex]\[ f(0) = 450 \times 1 = 450 \][/tex]

### D) Evaluate [tex]\( f(5) \)[/tex]

To find [tex]\( f(5) \)[/tex]:
[tex]\[ f(5) = 450 \times (0.65)^5 \][/tex]
Using this exponent value, we find:
[tex]\[ f(5) \approx 52.21 \][/tex]

### E) Evaluate [tex]\( f(10) \)[/tex]

To find [tex]\( f(10) \)[/tex]:
[tex]\[ f(10) = 450 \times (0.65)^{10} \][/tex]
Using this exponent value, we find:
[tex]\[ f(10) \approx 6.06 \][/tex]

Here is a summary of the evaluations:

[tex]\[ \begin{array}{|l|c|} \hline A) \ f(-10) & f(-10) \approx 33425.58 \\ \hline B) \ f(-5) & f(-5) \approx 3878.34 \\ \hline C) \ f(0) & f(0) = 450 \\ \hline D) \ f(5) & f(5) \approx 52.21 \\ \hline E) \ f(10) & f(10) \approx 6.06 \\ \hline \end{array} \][/tex]