Find the characteristic equation and the eigenvalues (and a basis for each of the corresponding eigenspaces) of the matrix:

[tex]\[
\left[\begin{array}{rrr}
0 & -3 & 5 \\
-4 & 4 & -10 \\
0 & 0 & 4
\end{array}\right]
\][/tex]

(a) The characteristic equation:
[tex]\[ \square \][/tex]

(b) The eigenvalues (Enter your answers from smallest to largest):
[tex]\[
(\lambda_1, \lambda_2, \lambda_3) = (\square)
\][/tex]

(c) A basis for each of the corresponding eigenspaces:
[tex]\[
\begin{array}{l}
x_1 = \square \\
x_2 = \square \\
x_3 = \square
\end{array}
\][/tex]



Answer :

To solve the problem, we will follow these steps:

1. Find the characteristic equation.
2. Find the eigenvalues.
3. Find a basis for each eigenspace.

### Step 1: Find the Characteristic Equation

The characteristic equation is given by the determinant of [tex]\(A - \lambda I\)[/tex] set to zero, [tex]\( \det(A - \lambda I) = 0 \)[/tex].

Given matrix [tex]\(A\)[/tex]:
[tex]\[ A = \left[\begin{array}{rrr} 0 & -3 & 5 \\ -4 & 4 & -10 \\ 0 & 0 & 4 \end{array} \right] \][/tex]

Subtract [tex]\( \lambda \)[/tex] times the identity matrix [tex]\(I\)[/tex] from [tex]\(A\)[/tex]:

[tex]\[ A - \lambda I = \left[\begin{array}{rrr} 0-\lambda & -3 & 5 \\ -4 & 4-\lambda & -10 \\ 0 & 0 & 4-\lambda \end{array} \right] \][/tex]

The characteristic polynomial is the determinant of this matrix:

[tex]\[ \det(A - \lambda I) = \det \left[\begin{array}{rrr} -\lambda & -3 & 5 \\ -4 & 4-\lambda & -10 \\ 0 & 0 & 4-\lambda \end{array} \right] \][/tex]

To find this determinant, we expand along the third row:

[tex]\[ \det(A - \lambda I) = (-\lambda) \left[ (4-\lambda) \times (4-\lambda) - (-10) \times 0 \right] - (-3) \left[ -4 \times (4-\lambda) - (-10) \times 0 \right] + 5(0) \][/tex]

Simplify the determinant expression:

[tex]\[ \det(A - \lambda I) = (-\lambda) ( (4-\lambda)(4-\lambda) - 0 ) + 3 ( 4(4-\lambda) ) \][/tex]

[tex]\[ \det(A - \lambda I) = (-\lambda) ( (4-\lambda)^2 ) + 12(4-\lambda) \][/tex]

[tex]\[ \det(A - \lambda I) = -\lambda ( 16 - 8\lambda + \lambda^2 ) + 48 - 12\lambda \][/tex]

[tex]\[ \det(A - \lambda I) = -16\lambda + 8\lambda^2 - \lambda^3 + 48 - 12\lambda \][/tex]

Combine like terms:

[tex]\[ \det(A - \lambda I) = -\lambda^3 + 8\lambda^2 - 28\lambda + 48 \][/tex]

Set this equal to zero to obtain the characteristic equation:

[tex]\[ -\lambda^3 + 8\lambda^2 - 28\lambda + 48 = 0 \][/tex]

### Step 2: Find the Eigenvalues

Solve the characteristic equation for [tex]\( \lambda \)[/tex]:

[tex]\[ -\lambda^3 + 8\lambda^2 - 28\lambda + 48 = 0 \][/tex]

Synthetic division or an algebra solver can help here. By testing possible rational roots, we find that [tex]\( \lambda = 4 \)[/tex], [tex]\( \lambda = 2 \)[/tex], and [tex]\( \lambda = -6 \)[/tex].

### Eigenvalues

[tex]\[ \lambda_1 = -6, \lambda_2 = 2, \lambda_3 = 4 \][/tex]

### Step 3: Find Eigenspaces

For each eigenvalue, we solve [tex]\( (A - \lambda I) \mathbf{x} = 0 \)[/tex] to find a basis for each corresponding eigenspace.

Eigenvalue [tex]\(\lambda = -6\)[/tex]:

[tex]\[ A - (-6)I = \left[\begin{array}{rrr} 6 & -3 & 5 \\ -4 & 10 & -10 \\ 0 & 0 & 10 \end{array} \right] \][/tex]

Row reduce this matrix to obtain:

[tex]\[ \left[\begin{array}{rrr} 1 & -0.5 & 0.8333 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array} \right] \][/tex]

This simplifies to:

[tex]\[ x_1 = t \left[ \begin{array}{r} 1 \\ 0 \\ 0 \end{array} \right] \][/tex]

Eigenvalue [tex]\(\lambda = 2\)[/tex]:

[tex]\[ A - 2I = \left[\begin{array}{rrr} -2 & -3 & 5 \\ -4 & 2 & -10 \\ 0 & 0 & 2 \end{array} \right] \][/tex]

Row reduce this matrix:

[tex]\[ \left[\begin{array}{rrr} 1 & 3/2 & -5/2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array} \right] \][/tex]

This simplifies to:

[tex]\[ x_2 = s \left[ \begin{array}{r} -1 \\ 1.5 \\ 0 \end{array} \right] + t \left[ \begin{array}{r} 0 \\ 0 \\ 1 \end{array} \right] \][/tex]

Eigenvalue [tex]\(\lambda = 4\)[/tex]:

[tex]\[ A - 4I = \left[\begin{array}{rrr} -4 & -3 & 5 \\ -4 & 0 & -10 \\ 0 & 0 & 0 \end{array} \right] \][/tex]

Row reduce this matrix:

[tex]\[ \left[\begin{array}{rrr} 1 & 0.75 & -1.25 \\ 0 & 1 & -2.5 \\ 0 & 0 & 0 \end{array} \right] \][/tex]

This simplifies to:

[tex]\[ x_3 = s \left[ \begin{array}{r} 0.25 \\ -2.5 \\ 1 \end{array} \right] \][/tex]

Thus, the final answers are:

(a) The characteristic equation:
[tex]\[ -\lambda^3 + 8\lambda^2 - 28\lambda + 48 = 0 \][/tex]

(b) The eigenvalues (from smallest to largest):
[tex]\[ (\lambda_1, \lambda_2, \lambda_3) = (-6, 2, 4) \][/tex]

A basis for each of the corresponding eigenspaces:
[tex]\[ x_1 = \left\{ \left[ \begin{array}{r} 1 \\ 0 \\ 0 \end{array} \right] \right\} \][/tex]
[tex]\[ x_2 = \left\{ \left[ \begin{array}{r} -1 \\ 1.5 \\ 0 \end{array} \right], \left[ \begin{array}{r} 0 \\ 0 \\ 1 \end{array} \right] \right\} \][/tex]
[tex]\[ x_3 = \left\{ \left[ \begin{array}{r} 0.25 \\ -2.5 \\ 1 \end{array} \right] \right\} \][/tex]