Answer :

Sure, I'd be happy to guide you through solving the problem of multiplying and simplifying the given fractions. Let's look at the problem:

[tex]\[ \frac{1}{2x + 1} \times \frac{1}{2x - 1} \][/tex]

### Step 1: Multiply the Fractions

When multiplying fractions, you multiply the numerators together and the denominators together. For our problem, the numerators are both 1, and the denominators are [tex]\(2x + 1\)[/tex] and [tex]\(2x - 1\)[/tex]:

[tex]\[ \frac{1 \cdot 1}{(2x + 1)(2x - 1)} = \frac{1}{(2x + 1)(2x - 1)} \][/tex]

### Step 2: Simplify the Result

We need to simplify the expression [tex]\(\frac{1}{(2x + 1)(2x - 1)}\)[/tex].

Notice that the denominator is a product of two binomials. This can be recognized as a difference of squares:

[tex]\[ (a + b)(a - b) = a^2 - b^2 \][/tex]

In our case, [tex]\(a = 2x\)[/tex] and [tex]\(b = 1\)[/tex], hence:

[tex]\[ (2x + 1)(2x - 1) = (2x)^2 - 1^2 \][/tex]

Simplify this further:

[tex]\[ (2x)^2 - 1^2 = 4x^2 - 1 \][/tex]

### Step 3: Write the Final Simplified Expression

Now, substituting back into our fraction, we get:

[tex]\[ \frac{1}{4x^2 - 1} \][/tex]

So, the simplified form of the original expression [tex]\(\frac{1}{2x + 1} \times \frac{1}{2x - 1}\)[/tex] is:

[tex]\[ \frac{1}{4x^2 - 1} \][/tex]

### Summary

To summarize, the given multiplication of fractions:

[tex]\[ \frac{1}{2x + 1} \times \frac{1}{2x - 1} \][/tex]

multiplies to form:

[tex]\[ \frac{1}{(2x + 1)(2x - 1)} \][/tex]

which simplifies to:

[tex]\[ \frac{1}{4x^2 - 1} \][/tex]