The work function for the surface of aluminum is 4.2 eV. How much potential difference will be required to stop the emission of maximum energy electrons emitted by light of wavelength 2000 Å? (Planck's constant, [tex]$h = 6.6 \times 10^{-34} \text{Js}$[/tex])

[Ans: 2 V]



Answer :

Certainly! Let's solve this problem step-by-step using the given data.

1. Convert the Work Function from eV to Joules:

The work function (ϕ) for aluminium is given as 4.2 eV. To convert this to Joules:
[tex]\[ 1 \text{ eV} = 1.60218 \times 10^{-19} \text{ J} \][/tex]
Therefore,
[tex]\[ ϕ = 4.2 \text{ eV} \times 1.60218 \times 10^{-19} \text{ J/eV} = 6.729156 \times 10^{-19} \text{ J} \][/tex]

2. Calculate the Energy of the Incident Photons:

The wavelength (λ) of the incident light is given as 2000 Å. First, convert this into meters:
[tex]\[ 1 \text{ Å} = 10^{-10} \text{ meters} \][/tex]
[tex]\[ \lambda = 2000 \times 10^{-10} \text{ meters} = 2 \times 10^{-7} \text{ meters} \][/tex]

Now, use Planck's equation to find the energy of the photons:
[tex]\[ E = \frac{hc}{λ} \][/tex]
where:
[tex]\[ h = 6.6 \times 10^{-34} \text{ J·s}, \quad c = 3 \times 10^{8} \text{ m/s} \][/tex]

Substitute these values in:
[tex]\[ E = \frac{(6.6 \times 10^{-34} \text{ J·s}) \times (3 \times 10^{8} \text{ m/s})}{2 \times 10^{-7} \text{ meters}} = 9.9 \times 10^{-19} \text{ J} \][/tex]

3. Calculate the Kinetic Energy of the Emitted Electrons:

The kinetic energy (KE) of the emitted electrons can be found by subtracting the work function from the energy of the incident photons:
[tex]\[ KE = E - ϕ \][/tex]
[tex]\[ KE = 9.9 \times 10^{-19} \text{ J} - 6.729156 \times 10^{-19} \text{ J} = 3.170844 \times 10^{-19} \text{ J} \][/tex]

4. Find the Potential Difference Required to Stop the Electrons:

The stopping potential (V) is related to the kinetic energy of the emitted electrons by the equation:
[tex]\[ KE = eV \][/tex]
where [tex]\( e \)[/tex] is the charge of an electron ([tex]\( 1.60218 \times 10^{-19} \text{ C} \)[/tex]).

Rearrange to solve for [tex]\( V \)[/tex]:
[tex]\[ V = \frac{KE}{e} \][/tex]
[tex]\[ V = \frac{3.170844 \times 10^{-19} \text{ J}}{1.60218 \times 10^{-19} \text{ C}} = 1.979081002 \text{ V} \][/tex]

Therefore, the potential difference required to stop the emission of maximum energy electrons is approximately 2 V.