Answer :
To determine the potential energy of an object, we use the formula for gravitational potential energy:
[tex]\[ \textrm{Potential Energy} = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object,
- [tex]\( g \)[/tex] is the acceleration due to gravity,
- [tex]\( h \)[/tex] is the height at which the object is raised.
In this scenario:
- The mass [tex]\( m \)[/tex] is 5.24 kilograms,
- The acceleration due to gravity [tex]\( g \)[/tex] is 9.8 meters/second²,
- The height [tex]\( h \)[/tex] is 1.63 meters.
Now, let's calculate step-by-step:
1. Substitute the known values into the formula:
[tex]\[ \textrm{Potential Energy} = 5.24 \, \textrm{kg} \times 9.8 \, \textrm{m/s}^2 \times 1.63 \, \textrm{m} \][/tex]
2. Multiply the mass by the acceleration due to gravity:
[tex]\[ 5.24 \times 9.8 = 51.352 \][/tex]
3. Multiply this result by the height:
[tex]\[ 51.352 \times 1.63 = 83.70376 \][/tex]
The potential energy of the object is approximately [tex]\( 83.70376 \)[/tex] joules.
Given the options:
A. 65 joules
B. 84 joules
C. 91 joules
D. 1.0 x 10² joules
E. 1.5 x 10² joules
The closest correct answer is:
B. 84 joules.
[tex]\[ \textrm{Potential Energy} = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object,
- [tex]\( g \)[/tex] is the acceleration due to gravity,
- [tex]\( h \)[/tex] is the height at which the object is raised.
In this scenario:
- The mass [tex]\( m \)[/tex] is 5.24 kilograms,
- The acceleration due to gravity [tex]\( g \)[/tex] is 9.8 meters/second²,
- The height [tex]\( h \)[/tex] is 1.63 meters.
Now, let's calculate step-by-step:
1. Substitute the known values into the formula:
[tex]\[ \textrm{Potential Energy} = 5.24 \, \textrm{kg} \times 9.8 \, \textrm{m/s}^2 \times 1.63 \, \textrm{m} \][/tex]
2. Multiply the mass by the acceleration due to gravity:
[tex]\[ 5.24 \times 9.8 = 51.352 \][/tex]
3. Multiply this result by the height:
[tex]\[ 51.352 \times 1.63 = 83.70376 \][/tex]
The potential energy of the object is approximately [tex]\( 83.70376 \)[/tex] joules.
Given the options:
A. 65 joules
B. 84 joules
C. 91 joules
D. 1.0 x 10² joules
E. 1.5 x 10² joules
The closest correct answer is:
B. 84 joules.