10. What are the coordinates of the center and the measure of the radius for a circle whose equation is [tex]$(x-10)^2+(y-3)^2=36$[/tex]?

A. center [tex]=(-10,-3)[/tex], radius [tex]=6[/tex]
B. center [tex]=(10,3)[/tex], radius [tex]=36[/tex]
C. center [tex]=(10,3)[/tex], radius [tex]=6[/tex]
D. center [tex]=(-10,-3)[/tex], radius [tex]=36[/tex]



Answer :

To determine the center and radius of the circle given by the equation [tex]\((x-10)^2 + (y-3)^2 = 36\)[/tex], we need to match it to the standard form of a circle's equation:

[tex]\[ (x-h)^2 + (y-k)^2 = r^2 \][/tex]

Here, [tex]\( (h, k) \)[/tex] represents the coordinates of the center of the circle, and [tex]\( r \)[/tex] represents the radius of the circle.

From the given equation:
[tex]\[ (x-10)^2 + (y-3)^2 = 36 \][/tex]

we can see that:
- [tex]\( h = 10 \)[/tex] (the x-coordinate of the center)
- [tex]\( k = 3 \)[/tex] (the y-coordinate of the center)

So, the coordinates of the center of the circle are [tex]\((10, 3)\)[/tex].

Next, we need to find the radius. The given equation is:
[tex]\[ (x-10)^2 + (y-3)^2 = 36 \][/tex]

Here, [tex]\( 36 \)[/tex] represents [tex]\( r^2 \)[/tex] (the square of the radius). To find the radius [tex]\( r \)[/tex], we take the square root of [tex]\( 36 \)[/tex]:

[tex]\[ r = \sqrt{36} = 6 \][/tex]

Therefore, the radius of the circle is [tex]\( 6 \)[/tex].

So, the correct answer is:
[tex]\[ \text{center } =(10, 3), \text{ radius }= 6 \][/tex]