Answer :
To determine the value of [tex]\( x \)[/tex] that maximizes the function [tex]\( A(x) = P(1 + b x)^m (1 - x)^n \)[/tex], where:
- [tex]\( P = 4100 \)[/tex] is the initial bankroll,
- [tex]\( b = 1.44 \)[/tex],
- [tex]\( m = 33 \)[/tex] is the number of wins,
- [tex]\( n = 14 \)[/tex] is the number of losses,
- [tex]\( x \)[/tex] is the fraction of the bankroll wagered at each of the [tex]\( N = m + n = 47 \)[/tex] consecutive events,
we proceed as follows:
1. Rewrite the function with the given values:
[tex]\[ A(x) = 4100 (1 + 1.44 x)^{33} (1 - x)^{14} \][/tex]
2. Identify the optimization problem:
We need to find the value of [tex]\( x \)[/tex] on the interval [tex]\([0, 1]\)[/tex] that maximizes the function [tex]\( A(x) \)[/tex].
3. Optimize the function:
The optimal value of [tex]\( x \)[/tex] that maximizes [tex]\( A(x) \)[/tex] can be found using numerical methods to determine the peak value within the domain [tex]\( 0 \leq x \leq 1 \)[/tex].
The maximum value of [tex]\( A(x) \)[/tex] occurs at:
[tex]\[ x \approx 0.49527189227236057 \][/tex]
4. Calculate the maximum value of [tex]\( A(x) \)[/tex]:
Substitute [tex]\( x = 0.49527189227236057 \)[/tex] back into the function to find [tex]\( A(x) \)[/tex]:
[tex]\[ A \left( 0.49527189227236057 \right) \approx 14831463.175097775 \][/tex]
Therefore, the maximum value of [tex]\( A(x) \)[/tex] is approximately [tex]\( 14831463.175097775 \)[/tex], which occurs at [tex]\( x \approx 0.49527189227236057 \)[/tex].
- [tex]\( P = 4100 \)[/tex] is the initial bankroll,
- [tex]\( b = 1.44 \)[/tex],
- [tex]\( m = 33 \)[/tex] is the number of wins,
- [tex]\( n = 14 \)[/tex] is the number of losses,
- [tex]\( x \)[/tex] is the fraction of the bankroll wagered at each of the [tex]\( N = m + n = 47 \)[/tex] consecutive events,
we proceed as follows:
1. Rewrite the function with the given values:
[tex]\[ A(x) = 4100 (1 + 1.44 x)^{33} (1 - x)^{14} \][/tex]
2. Identify the optimization problem:
We need to find the value of [tex]\( x \)[/tex] on the interval [tex]\([0, 1]\)[/tex] that maximizes the function [tex]\( A(x) \)[/tex].
3. Optimize the function:
The optimal value of [tex]\( x \)[/tex] that maximizes [tex]\( A(x) \)[/tex] can be found using numerical methods to determine the peak value within the domain [tex]\( 0 \leq x \leq 1 \)[/tex].
The maximum value of [tex]\( A(x) \)[/tex] occurs at:
[tex]\[ x \approx 0.49527189227236057 \][/tex]
4. Calculate the maximum value of [tex]\( A(x) \)[/tex]:
Substitute [tex]\( x = 0.49527189227236057 \)[/tex] back into the function to find [tex]\( A(x) \)[/tex]:
[tex]\[ A \left( 0.49527189227236057 \right) \approx 14831463.175097775 \][/tex]
Therefore, the maximum value of [tex]\( A(x) \)[/tex] is approximately [tex]\( 14831463.175097775 \)[/tex], which occurs at [tex]\( x \approx 0.49527189227236057 \)[/tex].