Answer :

To simplify the given expression:

[tex]\[ \frac{x}{x-y} - \frac{x}{x+y} + \frac{2xy}{x^2 + y^2} \][/tex]

we'll proceed step-by-step.

First, we need to find a common denominator for the fractions. The common denominator for [tex]\(\frac{x}{x-y}\)[/tex] and [tex]\(\frac{x}{x+y}\)[/tex] is [tex]\((x-y)(x+y)\)[/tex], or equivalently, [tex]\(x^2 - y^2\)[/tex].

1. Rewrite the fractions with the common denominator [tex]\(x^2 - y^2\)[/tex]:

[tex]\[ \frac{x}{x-y} = \frac{x(x+y)}{(x-y)(x+y)} = \frac{x^2 + xy}{x^2 - y^2} \][/tex]

[tex]\[ \frac{x}{x+y} = \frac{x(x-y)}{(x+y)(x-y)} = \frac{x^2 - xy}{x^2 - y^2} \][/tex]

2. Now, combine the fractions:

[tex]\[ \frac{x}{x-y} - \frac{x}{x+y} = \frac{x^2 + xy}{x^2 - y^2} - \frac{x^2 - xy}{x^2 - y^2} = \frac{(x^2 + xy) - (x^2 - xy)}{x^2 - y^2} \][/tex]

Simplify the numerator:

[tex]\[ (x^2 + xy) - (x^2 - xy) = x^2 + xy - x^2 + xy = 2xy \][/tex]

Thus,

[tex]\[ \frac{x}{x-y} - \frac{x}{x+y} = \frac{2xy}{x^2 - y^2} \][/tex]

3. Now, combine this result with the third term [tex]\(\frac{2xy}{x^2 + y^2}\)[/tex]:

[tex]\[ \frac{2xy}{x^2 - y^2} + \frac{2xy}{x^2 + y^2} \][/tex]

4. We rewrite this as a single fraction by adding with a common denominator. The common denominator for these fractions is [tex]\((x^2 - y^2)(x^2 + y^2)\)[/tex]:

[tex]\[ \frac{2xy(x^2 + y^2) + 2xy(x^2 - y^2)}{(x^2 - y^2)(x^2 + y^2)} \][/tex]

Since both terms in the numerator share a factor of [tex]\(2xy\)[/tex], we can factor that out:

[tex]\[ 2xy \left( \frac{x^2 + y^2 + x^2 - y^2}{(x^2 - y^2)(x^2 + y^2)} \right) \][/tex]

Simplify the numerator inside the parentheses:

[tex]\[ x^2 + y^2 + x^2 - y^2 = 2x^2 \][/tex]

So the fraction becomes:

[tex]\[ 2xy \left( \frac{2x^2}{(x^2 - y^2)(x^2 + y^2)} \right) \][/tex]

Combine the constants:

[tex]\[ \frac{4x^3y}{(x^2 - y^2)(x^2 + y^2)} \][/tex]

Finally, observe that our denominator [tex]\((x^2 - y^2)(x^2 + y^2)\)[/tex]:

[tex]\[ (x^2 - y^2)(x^2 + y^2) = x^4 - y^4 \][/tex]

Thus the simplified expression is:

[tex]\[ \boxed{\frac{4x^3y}{x^4 - y^4}} \][/tex]