Select the correct answer.

The values of the impulse and the time interval for various collisions are listed in the table. In which case is the force maximum?

\begin{tabular}{|l|l|l|}
\hline
Collision & Impulse (kilogram-meters/second) & Time Interval (seconds) \\
\hline
A & 10,000 & [tex]$10^{3}$[/tex] \\
\hline
B & 1,000 & [tex]$10^{2}$[/tex] \\
\hline
C & 100 & [tex]$10^{1}$[/tex] \\
\hline
D & 10 & [tex]$10^{0}$[/tex] \\
\hline
E & 1 & [tex]$10^{-2}$[/tex] \\
\hline
\end{tabular}

A. A

B. B

C. C

D. D



Answer :

To determine in which case the force is maximum, we need to calculate the force for each collision using the formula:

[tex]\[ F = \frac{\text{Impulse}}{\text{Time Interval}} \][/tex]

We are given the following values:

1. Collision A:
[tex]\[ \text{Impulse} = 10,000 \, \text{kgm/s} \][/tex]
[tex]\[ \text{Time Interval} = 10^3 \, \text{s} \][/tex]

2. Collision B:
[tex]\[ \text{Impulse} = 1,000 \, \text{kgm/s} \][/tex]
[tex]\[ \text{Time Interval} = 10^2 \, \text{s} \][/tex]

3. Collision C:
[tex]\[ \text{Impulse} = 100 \, \text{kgm/s} \][/tex]
[tex]\[ \text{Time Interval} = 10^1 \, \text{s} \][/tex]

4. Collision D:
[tex]\[ \text{Impulse} = 10 \, \text{kgm/s} \][/tex]
[tex]\[ \text{Time Interval} = 10^0 \, \text{s} \][/tex]

5. Collision E:
[tex]\[ \text{Impulse} = 1 \, \text{kgm/s} \][/tex]
[tex]\[ \text{Time Interval} = 10^{-2} \, \text{s} \][/tex]

Now, we calculate the force for each collision:

1. For Collision A:
[tex]\[ F_A = \frac{10,000}{10^3} \][/tex]
[tex]\[ F_A = \frac{10,000}{1,000} \][/tex]
[tex]\[ F_A = 10 \, \text{N} \][/tex]

2. For Collision B:
[tex]\[ F_B = \frac{1,000}{10^2} \][/tex]
[tex]\[ F_B = \frac{1,000}{100} \][/tex]
[tex]\[ F_B = 10 \, \text{N} \][/tex]

3. For Collision C:
[tex]\[ F_C = \frac{100}{10^1} \][/tex]
[tex]\[ F_C = \frac{100}{10} \][/tex]
[tex]\[ F_C = 10 \, \text{N} \][/tex]

4. For Collision D:
[tex]\[ F_D = \frac{10}{10^0} \][/tex]
[tex]\[ F_D = \frac{10}{1} \][/tex]
[tex]\[ F_D = 10 \, \text{N} \][/tex]

5. For Collision E:
[tex]\[ F_E = \frac{1}{10^{-2}} \][/tex]
[tex]\[ F_E = \frac{1}{0.01} \][/tex]
[tex]\[ F_E = 100 \, \text{N} \][/tex]

Among these forces, the maximum force is [tex]\( 100 \, \text{N} \)[/tex], which occurs in Collision E.

Thus, the correct answer is:
E. Collision E