Answer :

Certainly! Let's solve the given system of linear equations:

[tex]\[ \left\{ \begin{array}{l} x + y + z = 3 \quad \quad (1)\\ 2x - y + 3z = 5 \quad \quad (2) \end{array} \right. \][/tex]

We'll use the substitution or elimination method to find the values of the variables [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex].

### Step 1: Solve for one variable
First, let's solve equation (1) for [tex]\( x \)[/tex]:

[tex]\[ x = 3 - y - z \quad \quad (3) \][/tex]

### Step 2: Substitute the expression into the second equation
Next, we substitute the expression for [tex]\( x \)[/tex] from equation (3) into equation (2):

[tex]\[ 2(3 - y - z) - y + 3z = 5 \][/tex]

### Step 3: Distribute and simplify
Now, distribute and simplify the equation:

[tex]\[ 6 - 2y - 2z - y + 3z = 5 \][/tex]

Combine like terms:

[tex]\[ 6 - 3y + z = 5 \][/tex]

Isolate the term with [tex]\(y\)[/tex] on one side:

[tex]\[ 6 - 5 = 3y - z \][/tex]

Thus,

[tex]\[ 1 = 3y - z \quad \quad (4) \][/tex]

### Step 4: Solve for [tex]\( y \)[/tex] in terms of [tex]\( z \)[/tex]
From equation (4), solve for [tex]\( y \)[/tex]:

[tex]\[ 3y = z + 1 \][/tex]

Divide by 3:

[tex]\[ y = \frac{z + 1}{3} \quad \quad (5) \][/tex]

### Step 5: Substitute [tex]\( y \)[/tex] back into equation (3)
Now, substitute the expression for [tex]\( y \)[/tex] from equation (5) back into equation (3):

[tex]\[ x = 3 - \frac{z + 1}{3} - z \][/tex]

### Step 6: Simplify this expression
Simplify the equation:

[tex]\[ x = 3 - \frac{z + 1}{3} - z \][/tex]

Find a common denominator for the fraction:

[tex]\[ x = 3 - \frac{z + 1}{3} - z = 3 - \frac{z + 1}{3} - z = 3 - \frac{z + 1 + 3z}{3} = 3 - \frac{4z + 1}{3} \][/tex]

Simplify further:

[tex]\[ x = 3 - \left( \frac{4z + 1}{3} \right) \][/tex]

[tex]\[ x = \frac{9}{3} - \frac{4z + 1}{3} \][/tex]

Combine the fractions:

[tex]\[ x = \frac{9 - 4z - 1}{3} = \frac{8 - 4z}{3} \][/tex]

Thus,

[tex]\[ x = \frac{8}{3} - \frac{4z}{3} \][/tex]

### Final expressions for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]

Thus, we have the solutions for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in terms of [tex]\( z \)[/tex]:

[tex]\[ x = \frac{8}{3} - \frac{4z}{3} \][/tex]
[tex]\[ y = \frac{z + 1}{3} \][/tex]

So, the solution to the system of equations is:

[tex]\[ \boxed{x = \frac{8}{3} - \frac{4z}{3}, \; y = \frac{z + 1}{3}} \][/tex]

Since the system has three variables but only two equations, [tex]\( z \)[/tex] is a free parameter and can take any real number value. Hence, [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are expressed in terms of [tex]\( z \)[/tex].