Answer :
To solve the equation [tex]\( x^2 - 24x = -80 \)[/tex] by completing the square, follow these steps:
1. Start with the given equation:
[tex]\[ x^2 - 24x = -80 \][/tex]
2. Move the constant term to the left side of the equation:
[tex]\[ x^2 - 24x + 80 = 0 \][/tex]
3. To complete the square, take the coefficient of [tex]\( x \)[/tex] (which is [tex]\(-24\)[/tex]), divide it by 2, and then square the result:
[tex]\[ \left(\frac{-24}{2}\right)^2 = (-12)^2 = 144 \][/tex]
4. Add and subtract this square within the equation:
[tex]\[ x^2 - 24x + 144 - 144 + 80 = 0 \][/tex]
Which simplifies to:
[tex]\[ (x - 12)^2 - 64 = 0 \][/tex]
5. Isolate the squared term:
[tex]\[ (x - 12)^2 = 64 \][/tex]
6. Take the square root of both sides:
[tex]\[ x - 12 = \pm \sqrt{64} \][/tex]
Which gives us:
[tex]\[ x - 12 = \pm 8 \][/tex]
7. Solve for [tex]\(x\)[/tex] by isolating [tex]\(x\)[/tex]:
[tex]\[ x = 12 + 8 \quad \text{or} \quad x = 12 - 8 \][/tex]
[tex]\[ x = 20 \quad \text{or} \quad x = 4 \][/tex]
Therefore, the solution set of the equation [tex]\( x^2 - 24x = -80 \)[/tex] is:
[tex]\( \{4, 20\} \)[/tex]
So, among the given options, the correct solution set is:
[tex]\( \{4, 20\} \)[/tex]
1. Start with the given equation:
[tex]\[ x^2 - 24x = -80 \][/tex]
2. Move the constant term to the left side of the equation:
[tex]\[ x^2 - 24x + 80 = 0 \][/tex]
3. To complete the square, take the coefficient of [tex]\( x \)[/tex] (which is [tex]\(-24\)[/tex]), divide it by 2, and then square the result:
[tex]\[ \left(\frac{-24}{2}\right)^2 = (-12)^2 = 144 \][/tex]
4. Add and subtract this square within the equation:
[tex]\[ x^2 - 24x + 144 - 144 + 80 = 0 \][/tex]
Which simplifies to:
[tex]\[ (x - 12)^2 - 64 = 0 \][/tex]
5. Isolate the squared term:
[tex]\[ (x - 12)^2 = 64 \][/tex]
6. Take the square root of both sides:
[tex]\[ x - 12 = \pm \sqrt{64} \][/tex]
Which gives us:
[tex]\[ x - 12 = \pm 8 \][/tex]
7. Solve for [tex]\(x\)[/tex] by isolating [tex]\(x\)[/tex]:
[tex]\[ x = 12 + 8 \quad \text{or} \quad x = 12 - 8 \][/tex]
[tex]\[ x = 20 \quad \text{or} \quad x = 4 \][/tex]
Therefore, the solution set of the equation [tex]\( x^2 - 24x = -80 \)[/tex] is:
[tex]\( \{4, 20\} \)[/tex]
So, among the given options, the correct solution set is:
[tex]\( \{4, 20\} \)[/tex]