[tex]\[
\frac{\csc (6x) + \cot (6x)}{\csc (6x) - \cot (6x)} =
\][/tex]

A. [tex]\(\cot^2(6x)\)[/tex]
B. [tex]\(\cot^2(3x)\)[/tex]
C. [tex]\(\cot(3x)\)[/tex]
D. [tex]\(\tan(6x)\)[/tex]



Answer :

Let's solve the given mathematical expression step-by-step.

We start with the given expression:
[tex]$ \frac{\csc(6x) + \cot(6x)}{\csc(6x) - \cot(6x)} $[/tex]

First, recall the definitions of cosecant ([tex]\(\csc\)[/tex]) and cotangent ([tex]\(\cot\)[/tex]) in terms of sine ([tex]\(\sin\)[/tex]) and cosine ([tex]\(\cos\)[/tex]):
[tex]$ \csc(6x) = \frac{1}{\sin(6x)} $[/tex]
[tex]$ \cot(6x) = \frac{\cos(6x)}{\sin(6x)} $[/tex]

Using these definitions, we can rewrite the numerator and the denominator of the given expression.

The numerator [tex]\(\csc(6x) + \cot(6x)\)[/tex] becomes:
[tex]$ \csc(6x) + \cot(6x) = \frac{1}{\sin(6x)} + \frac{\cos(6x)}{\sin(6x)} = \frac{1 + \cos(6x)}{\sin(6x)} $[/tex]

Similarly, the denominator [tex]\(\csc(6x) - \cot(6x)\)[/tex] becomes:
[tex]$ \csc(6x) - \cot(6x) = \frac{1}{\sin(6x)} - \frac{\cos(6x)}{\sin(6x)} = \frac{1 - \cos(6x)}{\sin(6x)} $[/tex]

Now, substituting these back into our original expression, we get:
[tex]$ \frac{\frac{1 + \cos(6x)}{\sin(6x)}}{\frac{1 - \cos(6x)}{\sin(6x)}} $[/tex]

We can simplify this fraction by multiplying the numerator by the reciprocal of the denominator:
[tex]$ \frac{(1 + \cos(6x)) / \sin(6x)}{(1 - \cos(6x)) / \sin(6x)} = \frac{1 + \cos(6x)}{1 - \cos(6x)} $[/tex]

Next, we use the trigonometric identities:
[tex]$ 1 + \cos(6x) = 2 \cos^2(3x) \quad \text{(since } \cos(6x) = 2 \cos^2(3x) - 1 \text{)} $[/tex]
[tex]$ 1 - \cos(6x) = 2 \sin^2(3x) \quad \text{(since } \cos(6x) = 1 - 2 \sin^2(3x) \text{)} $[/tex]

Hence, the expression simplifies to:
[tex]$ \frac{2 \cos^2(3x)}{2 \sin^2(3x)} = \frac{\cos^2(3x)}{\sin^2(3x)} = \cot^2(3x) $[/tex]

Thus, the given expression simplifies to [tex]\(\cot^2(3x)\)[/tex].

Therefore, the correct answer is:
[tex]$ \boxed{B.\ \cot^2(3x)} $[/tex]